OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation

Laurence Wilson and Rongjing Zhang  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16735-16744 (2012)
http://dx.doi.org/10.1364/OE.20.016735


View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Rayleigh-Sommerfeld back-propagation method is a fast and highly flexible volume reconstruction scheme for digital holographic microscopy. We present a new method for 3D localization of weakly scattering objects using this technique. A well-known aspect of classical optics (the Gouy phase shift) can be used to discriminate between objects lying on either side of the holographic image plane. This results in an unambiguous, model-free measurement of the axial coordinate of microscopic samples, and is demonstrated both on an individual colloidal sphere, and on a more complex object — a layer of such particles in close contact.

© 2012 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:
Microscopy

History
Original Manuscript: June 18, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: June 28, 2012
Published: July 9, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Laurence Wilson and Rongjing Zhang, "3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation," Opt. Express 20, 16735-16744 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-15-16735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express15, 18275–18282 (2007). [CrossRef] [PubMed]
  2. J. Fung, K. E. Martin, R. W. Perry, D. M. Katz, R. McGorty, and V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express19, 8051–8065 (2011). [CrossRef] [PubMed]
  3. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31, 4973–4978 (1992). [CrossRef] [PubMed]
  4. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA98, 11301–11305 (2001). [CrossRef] [PubMed]
  5. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA104, 17512–17517 (2007). [CrossRef] [PubMed]
  6. Z. Frentz, S. Kuehn, D. Hekstra, and S. Leiber, “Microbial population dynamics by digital in-line holographic microscopy,” Rev. Sci. Inst.81, 084301 (2010). [CrossRef]
  7. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci.179, 298–310 (1996). [CrossRef]
  8. R. Besseling, E. Weeks, A. Schofield, and W. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett.99, 028301 (2007). [CrossRef] [PubMed]
  9. J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J.100, 1608–1616 (2011). [CrossRef] [PubMed]
  10. A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science270, 1177–1179 (1995). [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics3rd Ed., (Roberts & Company, 2005).
  12. S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express15, 1505–1512 (2007). [CrossRef] [PubMed]
  13. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt.42, 827–833 (2003). [CrossRef] [PubMed]
  14. C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol.15, 686–693 (2004). [CrossRef]
  15. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45, 3893–3901 (2006). [CrossRef] [PubMed]
  16. M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010). [CrossRef]
  17. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech.42, 531–555 (2010). [CrossRef]
  18. D. Gabor, “A new microscopic principle,” Nature161, 18275–18282 (1948). [CrossRef]
  19. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons., 1983).
  20. B. Berne and R. Pecora, Dynamic Light Scattering (John Wiley & Sons, Inc., 1976).
  21. U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E67, 051904 (2003). [CrossRef]
  22. L. Mesquita, U. Agero, and O. Mesquita, “Defocusing microscopy: An approach for red blood cell optics,” Appl. Phys. Lett.88, 133901 (2006). [CrossRef]
  23. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express18, 12552–12561 (2010). [CrossRef] [PubMed]
  24. M. Born and E. Wolf, Principles of Optics6th Ed., (Cambridge University Press, 1998).
  25. G. Farnell, “Measured phase distribution in the image space of a microwave lens,” Can. J. Phys.36, 935–943 (1958). [CrossRef]
  26. A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44, 378–86 (1999). [CrossRef] [PubMed]
  27. A. Rohrbach and E. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys.91, 5474 (2002). [CrossRef]
  28. L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B113, 3806–3812 (2009). [CrossRef] [PubMed]
  29. F. Cheong, B. Krishnatreya, and D. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express18, 13563–13573 (2010). [CrossRef] [PubMed]
  30. E. L. Hall, Computer Image Processing and Recognition (Academic Press, 1979).
  31. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett.29, 1132–1134 (2004). [CrossRef] [PubMed]
  32. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng.46, 499–507 (2008). [CrossRef]
  33. B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE7184, 71840R–1–71840R–12 (2009).
  34. M. Elliot and W. Poon, “Conventional optical microscopy of colloidal suspensions,” Adv. Coll. Interf. Sci.92, 133–194 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited