OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open-ocean

Robert J.W. Brewin, Giorgio Dall’Olmo, Shubha Sathyendranath, and Nick J. Hardman-Mountford  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17632-17652 (2012)
http://dx.doi.org/10.1364/OE.20.017632


View Full Text Article

Enhanced HTML    Acrobat PDF (2828 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using an extensive database of in situ observations we present a model that estimates the particle backscattering coefficient as a function of the total chlorophyll concentration in the open-ocean (Case-1 waters). The parameters of the model include a constant background component and the chlorophyll-specific backscattering coefficients associated with small (<20μm) and large (>20μm) phytoplankton. The new model performed with similar accuracy when compared with a traditional power-law function, with the additional benefit of providing information on the role of phytoplankton size. The observed spectral-dependency (γ) of model parameters was consistent with past observations, such that γ associated with the small phytoplankton population was higher than that of large phytoplankton. Furthermore, γ associated with the constant background component suggests this component is likely attributed to submicron particles. We envisage that the model would be useful for improving Case-1 ocean-colour models, assimilating light into multi-phytoplankton ecosystem models and improving estimates of phytoplankton size structure from remote sensing.

© 2012 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1350) Atmospheric and oceanic optics : Backscattering
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 26, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: June 30, 2012
Published: July 19, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Robert J.W. Brewin, Giorgio Dall’Olmo, Shubha Sathyendranath, and Nick J. Hardman-Mountford, "Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open-ocean," Opt. Express 20, 17632-17652 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-16-17632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22, 709–722 (1977). [CrossRef]
  2. Z. P. Lee and C. Hu, “Global distribution of Case-1 waters: An analysis from SeaWiFS measurements,” Remote Sens. Environ.101, 270–276 (2006). [CrossRef]
  3. S. Sathyendranath and T. Platt, “Analytic model of ocean color,” Appl. Opt.36(12), 2620–2629 (1997). [CrossRef] [PubMed]
  4. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr.28, 343–383 (1991). [CrossRef]
  5. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res.26(2), 191–212 (2004). [CrossRef]
  6. S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layer spherical geometry,” Biogeosci. Discuss.6, 1497–1563 (2009). [CrossRef]
  7. G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosci.6(6), 947–967 (2009). [CrossRef]
  8. A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express18, 15073–15093 (2010). [CrossRef] [PubMed]
  9. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A review (Springer-Verlag, New York, 1983). [CrossRef]
  10. H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieved from ocean color remote sensing: an in situ approach,” Opt. Express18(20), 20949–20959 (2010). [CrossRef]
  11. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and S. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. [Atmospheres]93, 10909–10924 (1988). [PubMed]
  12. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. [Oceans]93, 749–768 (1988). [CrossRef] [PubMed]
  13. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt.33(30), 7070–7076 (1988). [CrossRef]
  14. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. [Oceans]106, 7163–7180 (2001). [CrossRef] [PubMed]
  15. R. A. Reynolds, D. Stramski, and G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. [Oceans]106, 7125–7138 (2001). [CrossRef] [PubMed]
  16. S. Sathyendranath, V. Stuart, G. Cota, H. Mass, and T. Platt, “Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches,” Int. J. Remote. Sens.22, 249–273 (2001). [CrossRef]
  17. L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials,” Limnol. Oceanogr.26, 617–689 (1981). [CrossRef]
  18. J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. [Oceans]100, 13333–13344 (1995). [CrossRef] [PubMed]
  19. A. Morel, “Light and Marine Photosynthesis: A Spectral Model with Geochemical and Climatological Implications,” Prog. Oceanogr.26, 263–306 (1991). [CrossRef]
  20. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. [Oceans]100, 13321–13332 (1995). [CrossRef] [PubMed]
  21. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. [Oceans]103, 31,033–31,044 (1998). [CrossRef] [PubMed]
  22. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations,” J. Geophys. Res. [Oceans]109, C11010 (2004), [CrossRef] [PubMed]
  23. M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Stoń, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res. [Oceans]108, C53143 (2003), [CrossRef] [PubMed]
  24. Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci.5, 495–507 (2008). [CrossRef]
  25. E. Devred, S. Sathyendranath, V. Stuart, H. Mass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. [Oceans]111, C03011 (2006), [CrossRef] [PubMed]
  26. V. A. Lutz, S. Sathyendranath, and E. J. H. Head, “Absorption coefficient of phytoplankton: Regional variations in the North Atlantic,” Mar. Ecol. Prog. Ser.135, 197–213 (1996). [CrossRef]
  27. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr.47(2), 404–417 (2002). [CrossRef]
  28. R. J. W. Brewin, E. Devred, S. Sathyendranath, S. J. Lavender, and N. J. Hardman-Mountford, “Model of phytoplankton absorption based on three size classes,” Appl. Opt.50(22), 4535–4549 (2011). [CrossRef] [PubMed]
  29. S. Sathyendranath, L. Watts, E. Devred, T. Platt, C. Caverhill, and H. Mass, “Discrimination of diatoms from other phytoplankton using ocean-colour data,” Mar. Ecol. Prog. Ser.272, 59–68 (2004). [CrossRef]
  30. A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by coloured detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf off Brazil,” Limnol. Oceanogr. Methods4, 237–253 (2006). [CrossRef]
  31. E. Devred, S. Sathyendranath, V. Stuart, and T. Platt, “A three component classification of phytoplankton absorption spectra: Applications to ocean-colour data,” Remote Sens. Environ.115(9), 2255–2266 (2011). [CrossRef]
  32. H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. [Oceans]111, C09024 (2006), [CrossRef] [PubMed]
  33. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. [Oceans]114, CO9015 (2009), [CrossRef] [PubMed]
  34. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosci.7, 3239–3257 (2010). [CrossRef]
  35. A. M. Ciotti, J. J. Cullen, and M. R. Lewis, “A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color,” J. Geophys. Res. [Oceans]104, C11559–1578 (1999). [CrossRef] [PubMed]
  36. J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” J. Geophys. Res. [Oceans]111, CO8005 (2006), [CrossRef] [PubMed]
  37. T. Hirata, J. Aiken, N. J. Hardman-Mountford, and T. J. Smyth, “An absorption model to derive phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ.112(6), 3153–3159 (2008). [CrossRef]
  38. R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Model.221, 1472–1483 (2010). [CrossRef]
  39. C. B. Mouw and J. Yoder, “Optical determination of phytoplankton size composition from global SeaWiFS imagery,” J. Geophys. Res. [Oceans]115, C12018 (2010), [CrossRef] [PubMed]
  40. T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioha, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosci.8, 311–327 (2011). [CrossRef]
  41. R. J. W. Brewin, N. J. Hardman-Mountford, S. Lavender, D. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ.115, 325–3159 (2011). [CrossRef]
  42. A. Fujiwara, T. Hirawake, K. Suzuki, and S-I. Saitoh, “Remote Sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosci.8, 3567–3580 (2011). [CrossRef]
  43. M. Fujii, E. Boss, and F. Chai “The value of adding optics to ecosystem models: a case study,” Biogeosci.4, 817–835 (2011). [CrossRef]
  44. P. J. Werdell and S. W. Bailey, “The SeaWiFS Bio-optical Archive and Storage System (SeaBASS): Current architecture and implementation,” Tech. Rep., NASA Goddard Space Flight Center, Greenbelt, Maryland, 45.
  45. T. Westberry, G. Dall’Olmo, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express18(15), 15419–15425 (2010). [CrossRef]
  46. E. S. Boss, R. Collier, G. Larson, K. Fennel, and S. W. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia574(1), 149–159 (2007). [CrossRef]
  47. P. J. Werdell and S. W. Bailey, “An improved in situ bio-optical data set for ocean colour algorithm development and satellite data production validation,” Remote Sens. Environ.98, 122–140 (2005). [CrossRef]
  48. P. J. Werdell, “Global bio-optical algorithms for ocean color satellite applications,” EOS Trans. AGU90(1), (2009), [CrossRef]
  49. P. J. Werdell, “An evaluation of Inherent Optical Property data for inclusion in the NASA bio-Optical Marine Algorithm Data set,” NASA Ocean Biology Processing Group Science Systems and Applications, Inc. Document Version 1.1, corresponding to NOMAD Version 1.3 19th September 2005: Online http://seabass.gsfc.nasa.gov/seabass/data/werdell_nomad_iop_qc.pdf (2005).
  50. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci.5, 171–201 (2008). [CrossRef]
  51. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. [Oceans]103, 24937–24953 (1998). [PubMed]
  52. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express17, 1671–1678 (2009). [CrossRef] [PubMed]
  53. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: Effect of salinity,” Opt. Express17, 5698–5710 (2009). [CrossRef] [PubMed]
  54. G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. J. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosci.8, 3423–3439 (2011). [CrossRef]
  55. Toby Westberry, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA (personal communication, 2011).
  56. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt.45(31), 8116–8131 (2006). [CrossRef] [PubMed]
  57. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt.41(15), 2705–2714 (2002). [CrossRef] [PubMed]
  58. B. A. Franz and P. J. Werdell, “A generalized framework for modeling of inherent optical properties in ocean remote sensing applications,” Presented at Ocean Optics XX, Anchorage, Alaska, 27th Sept.–1st Oct. 2010.
  59. P. J. Werdell, NASA Goddard Space Flight Center, Code 616, Greenbelt, MD 20771, USA, and B. A. Franz and colleagues are preparing a manuscript to be called “A generalized ocean color inversion model for retrieving marine inherent optical properties.”
  60. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt.41, 5755–5772 (2002). [CrossRef] [PubMed]
  61. C. B. Markwardt, “Non-Linear Least Squares Fitting in IDL with MPFIT,” Proc. ADASS XVIII, ASP Conf. Ser., D. Bohlender, P. Dowler, and D. Duran, ed. (Academic, 2009), 251–254.
  62. D. Antoine, D. A. Siegel, T. Kostadinov, S. Maritorena, N. B. Nelson, B. Gentili, V. Vellucci, and N. Guillocheau, “Variability in optical particle backscattering in contrasting bio-optical oceanic regimes,” Limnol. Oceanogr.56(3), 955–973 (2011). [CrossRef]
  63. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman and Hall, New York, 1993).
  64. F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. [Oceans]106, 19939–19956 (2001). [CrossRef] [PubMed]
  65. Angelica PenaInstitute of Ocean Sciences, Fisheries and Oceans Canada (DFO), Sidney, B.C. V8L 4B2, Canada (personal communication, 2011).
  66. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles19, GB1006 (2005), [CrossRef]
  67. Z. P. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, and B. Lubac, “Time series of bio-optical properties in a subtrophical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. [Oceans]115, C09012, (2010) [CrossRef] [PubMed]
  68. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  69. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt.44, 1667–1680 (2005). [CrossRef] [PubMed]
  70. M. Stramska, D. Stramski, S. Kaczmarek, D. B. Allison, and J. Schwarz, “Seasonal and regional differentiation of bio-optical properties within the north polar Atlantic,” J. Geophys. Res. [Oceans]111, C08003, (2006) [CrossRef] [PubMed]
  71. D. McKee, M. Chami, I. Brown, V. Sanjuan Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt.48(24), 4663–4675 (2009). [CrossRef] [PubMed]
  72. V. Martinez-Vicente, G. Tilstone, S. Sathyendranath, P. I. Miller, and S. B. Groom, “Contributions of phytoplankton and bacteria to the optical backscattering coefficient over the Mid-Atlantic Ridge,” Mar. Ecol. Prog. Ser.445, 37–51 (2012). [CrossRef]
  73. A. Morel, “Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach,” Deep Sea Res.34(7), 1093–1105 (1987). [CrossRef]
  74. H. M. Dierssen, R. M. Kudela, J. P. Ryan, and R. C. Zimmerman, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments,” Limnol. Oceanogr.51(6), 2646–2659 (2006). [CrossRef]
  75. Y-H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep Sea Res.39(11/12), 1835–1855 (1992). [CrossRef]
  76. A. Morel and Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res.49, 177–202 (1991). [CrossRef]
  77. M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci.4, 1041–1068 (2007). [CrossRef]
  78. C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ.112, 4186–4203 (2008). [CrossRef]
  79. S. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Bréon, “A species-dependent bio-optical model of case 1 water for the global ocean color processing,” Deep Sea Res. Part I53, 917–925 (2006). [CrossRef]
  80. O. Aumont, E. Maier-Reimer, S. Blain, and P. Monfray, “An ecosystem model of the global ocean including Fe, Si, P colimitations,” Global Biogeochem. Cycles17(2), 1060 (2003), [CrossRef]
  81. J. C. Blackford, J. I. Allen, and F. J. Gilbert, “Ecosystem dynamics at six contrasting sites: a generic modelling study,” J. Marine Syst.52, 191–215 (2004). [CrossRef]
  82. I. Marinov, S. C. Doney, and I. D. Lima, “Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light,” Biogeosci.7, 3941–3959 (2010). [CrossRef]
  83. C. D. Mobley, “Fast calculations for ocean ecosystem and inverse models,” Opt. Express19(20), 18927–18944 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited