OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Localization-based super-resolution microscopy with an sCMOS camera Part II: Experimental methodology for comparing sCMOS with EMCCD cameras

Fan Long, Shaoqun Zeng, and Zhen-Li Huang  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17741-17759 (2012)
http://dx.doi.org/10.1364/OE.20.017741


View Full Text Article

Enhanced HTML    Acrobat PDF (3866 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nowadays, there is a hot debate among industry and academic researchers that whether the newly developed scientific-grade Complementary Metal Oxide Semiconductor (sCMOS) cameras could become the image sensors of choice in localization-based super-resolution microscopy. To help researchers find answers to this question, here we reported an experimental methodology for quantitatively comparing the performance of low-light cameras in single molecule detection (characterized via image SNR) and localization (via localization accuracy). We found that a newly launched sCMOS camera can present superior imaging performance than a popular Electron Multiplying Charge Coupled Device (EMCCD) camera in a signal range (15-12000 photon/pixel) more than enough for typical localization-based super-resolution microscopy.

© 2012 OSA

OCIS Codes
(040.3780) Detectors : Low light level
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: May 25, 2012
Revised Manuscript: July 12, 2012
Manuscript Accepted: July 13, 2012
Published: July 19, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Fan Long, Shaoqun Zeng, and Zhen-Li Huang, "Localization-based super-resolution microscopy with an sCMOS camera Part II: Experimental methodology for comparing sCMOS with EMCCD cameras," Opt. Express 20, 17741-17759 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-16-17741


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Huang, H. Babcock, and X. W. Zhuang, “Breaking the diffraction barrier: Super-resolution imaging of cells,” Cell143(7), 1047–1058 (2010). [CrossRef] [PubMed]
  2. T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc.4(3), 291–308 (2009). [CrossRef] [PubMed]
  3. H. Shroff, H. White, and E. Betzig, “Photoactivated localization microscopy (PALM) of adhesion complexes,” Curr. Protoc. Cell Biol. Chapter 4, Unit 4.21 (2008).
  4. P. Seitz and A. J. P. Theuwissen, Single-photon imaging (Springer, Heidelberg, N. Y., 2011).
  5. B. Moomaw, “Camera technologies for low light imaging: overview and relative advantages,” Methods Cell Biol.81, 251–283 (2007). [CrossRef] [PubMed]
  6. J. W. Lichtman and W. Denk, “The big and the small: Challenges of imaging the brain’s circuits,” Science334(6056), 618–623 (2011). [CrossRef] [PubMed]
  7. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J.37(5), 433–451 (2006). [CrossRef]
  8. B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE7536, 753607, 753607-12 (2010). [CrossRef]
  9. J. R. Joubert and D. K. Sharma, “EMCCD vs. sCMOS for microscopic imaging,” Photon. Spectra45, 46–50 (2011).
  10. G. Holst, “Scientific CMOS image sensors,” Laser Photon.5, 18–21 (2009).
  11. http://sales.hamamatsu.com/assets/pdf/hpspdf/Flash4-ChangingTheGame.pdf , accessed May 2012.
  12. http://www.scmos.com/files/high/scmos_white_paper_8mb.pdf , accessed May 2012.
  13. Z. L. Huang, H. Y. Zhu, F. Long, H. Q. Ma, L. S. Qin, Y. F. Liu, J. P. Ding, Z. H. Zhang, Q. M. Luo, and S. Q. Zeng, “Localization-based super-resolution microscopy with an sCMOS camera,” Opt. Express19(20), 19156–19168 (2011). [CrossRef] [PubMed]
  14. S. Saurabh, S. Maji, and M. P. Bruchez, “Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules,” Opt. Express20(7), 7338–7349 (2012). [CrossRef] [PubMed]
  15. J. R. Janesick, Photon transfer: DN [lambda] (SPIE, Bellingham, Wash., 2007).
  16. A. El Gamal, B. Fowlera, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image,” Proc. SPIE3301, 168–177 (1998). [CrossRef]
  17. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  18. T. W. Quan, S. Q. Zeng, and Z. L. Huang, “Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging,” J. Biomed. Opt.15(6), 066005 (2010). [CrossRef] [PubMed]
  19. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86(2), 1185–1200 (2004). [CrossRef] [PubMed]
  20. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  21. M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol.475, 27–59 (2010). [CrossRef] [PubMed]
  22. S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011). [CrossRef] [PubMed]
  23. T. W. Quan, P. C. Li, F. Long, S. Q. Zeng, Q. M. Luo, P. N. Hedde, G. U. Nienhaus, and Z. L. Huang, “Ultra-fast, high-precision image analysis for localization-based super resolution microscopy,” Opt. Express18(11), 11867–11876 (2010). [CrossRef] [PubMed]
  24. http://www.andor.com/pdfs/spec_sheets/L897SS.pdf , accessed May 2012.
  25. http://www.photometrics.com/products/datasheets/HQ2.pdf , accessed May 2012.
  26. http://sales.hamamatsu.com/assets/pdf/hpspdf/e_orcaFlashE01.pdf , accessed May 2012.
  27. http://sales.hamamatsu.com/assets/pdf/hpspdf/e_flash4.pdf , accessed May 2012.
  28. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods7(5), 377–381 (2010). [CrossRef] [PubMed]
  29. M. C. DeSantis, S. H. DeCenzo, J. L. Li, and Y. M. Wang, “Precision analysis for standard deviation measurements of immobile single fluorescent molecule images,” Opt. Express18(7), 6563–6576 (2010). [CrossRef] [PubMed]
  30. M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol.9(12), 929–943 (2008). [CrossRef] [PubMed]
  31. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011). [CrossRef] [PubMed]
  32. M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-st. Circulation41, 3007–3015 (2006).
  33. M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron. Dev.50(5), 1227–1232 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited