OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series

Jan Buchholz, Jan Wolfgang Krieger, Gábor Mocsár, Balázs Kreith, Edoardo Charbon, György Vámosi, Udo Kebschull, and Jörg Langowski  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17767-17782 (2012)
http://dx.doi.org/10.1364/OE.20.017767


View Full Text Article

Enhanced HTML    Acrobat PDF (4391 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the evolving technology in CMOS integration, new classes of 2D-imaging detectors have recently become available. In particular, single photon avalanche diode (SPAD) arrays allow detection of single photons at high acquisition rates (≥ 100kfps), which is about two orders of magnitude higher than with currently available cameras. Here we demonstrate the use of a SPAD array for imaging fluorescence correlation spectroscopy (imFCS), a tool to create 2D maps of the dynamics of fluorescent molecules inside living cells. Time-dependent fluorescence fluctuations, due to fluorophores entering and leaving the observed pixels, are evaluated by means of autocorrelation analysis. The multi-τ correlation algorithm is an appropriate choice, as it does not rely on the full data set to be held in memory. Thus, this algorithm can be efficiently implemented in custom logic. We describe a new implementation for massively parallel multi-τ correlation hardware. Our current implementation can calculate 1024 correlation functions at a resolution of 10μs in real-time and therefore correlate real-time image streams from high speed single photon cameras with thousands of pixels.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.1490) Detectors : Cameras
(100.4550) Image processing : Correlators
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: March 22, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 21, 2012
Published: July 20, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Jan Buchholz, Jan Wolfgang Krieger, Gábor Mocsár, Balázs Kreith, Edoardo Charbon, György Vámosi, Udo Kebschull, and Jörg Langowski, "FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series," Opt. Express 20, 17767-17782 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-16-17767


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers13, 1–27 (1974). [CrossRef]
  2. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers13, 29–61 (1974). [CrossRef] [PubMed]
  3. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002). [CrossRef]
  4. M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.
  5. B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for low-intensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.
  6. M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.
  7. M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting,” Opt. Express11, 3583–3591 (2003). [CrossRef] [PubMed]
  8. T. Laurence, S. Fore, and T. Huser, “A fast, flexible algorithm for calculating correlations in fluorescence correlation spectroscopy,” Opt. Lett.31, 829–31 (2006). [CrossRef] [PubMed]
  9. E. Schaub, “F2cor: fast 2-stage correlation algorithm for FCS and DLS,” Opt. Express20, 2184–2195 (2012). [CrossRef] [PubMed]
  10. D. Magatti and F. Ferri, “Fast multi-tau real-time software correlator for dynamic light scattering,” Appl. Opt.40, 4011–4021 (2001). [CrossRef]
  11. D. Magatti and F. Ferri, “25 ns software correlator for photon and fluorescence correlation spectroscopy,” Rev. Sci. Instrum.74, 1135–1144 (2003). [CrossRef]
  12. M. Culbertson and D. Burden, “A distributed algorithm for multi-tau autocorrelation,” Rev. Sci. Instrum.78, 044102 (2007). [CrossRef] [PubMed]
  13. B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A649, 240–242 (2011). [CrossRef]
  14. C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.
  15. C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital real-time mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).
  16. C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital real-time correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.
  17. Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital real-time correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.
  18. W. Liu, J. Shen, and X. Sun, “Design of multiple-tau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.
  19. G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012). [CrossRef] [PubMed]
  20. M. Burkhardt and P. Schwille, “Electron multiplying ccd based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express14, 5013–5020 (2006). [CrossRef] [PubMed]
  21. R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010). [CrossRef]
  22. R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
  23. G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J.38, 813–828 (2009). [CrossRef] [PubMed]
  24. F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. Kang-Bin, and M. Wachsmuth, “EMCCD-based spectrally resolved fluorescence correlation spectroscopy,” Opt. Express18, 23818–23828 (2010). [CrossRef] [PubMed]
  25. D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J.96, 5050–5059 (2009). [CrossRef] [PubMed]
  26. B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007). [CrossRef] [PubMed]
  27. T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express10, 10627–10641 (2010). [CrossRef]
  28. J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol.29, 835–839 (2011). [CrossRef] [PubMed]
  29. L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, x-ray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (2009), pp. 40–41.
  30. M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004). [CrossRef] [PubMed]
  31. R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
  32. C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.
  33. C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35-μm CMOS and based on an event-driven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006). [CrossRef]
  34. K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt.2, 287–305 (1990). [CrossRef]
  35. K. Schätzel, “New concepts in correlator design,” Inst. Phys. Conf. Ser.77, 175–184 (1985).
  36. Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum.70, 4487–4496 (1999). [CrossRef]
  37. J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express18, 25468–25481 (2010). [CrossRef] [PubMed]
  38. The diffusion coefficient was D = 20μm2/s (corresponding to an intermediately sized protein in water), the simulation timestep of the random walk, as well as the minimum lag time were Δtsim = τmin = 1μs. There were around 1.2 particles in the effective measurement volume Veff ≈ 0.4μm3 on average.
  39. T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys.11, 10671–10681 (2009). [CrossRef]
  40. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2008), pp. 44–594.
  41. K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78, 023705 (2007). [CrossRef] [PubMed]
  42. Joachim Wuttke: lmfit - a C/C++ routine for Levenberg-Marquardt minimization with wrapper for least-squares curve fitting, based on work by B. S. Garbow, K. E. Hillstrom, J. J. Moré, and S. Moshier. Version 3.2, retrieved on 2011-08-31 from http://www.messen-und-deuten.de/lmfit/ .
  43. QuickFit 3.0 can be downloaded free of charge from http://www.dkfz.de/Macromol/quickfit/ . In addition to the fitting capabilities, it also contains software implementations of the correlators described in here.
  44. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83, 2300–2317 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited