OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Extended adding-doubling method for fluorescent applications

Sven Leyre, Guy Durinck, Bart Van Giel, Wouter Saeys, Johan Hofkens, Geert Deconinck, and Peter Hanselaer  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17856-17872 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper a fast, yet accurate method to estimate the spectral and angular distribution of the scattered radiation of a fluorescent material is described. The proposed method is an extension of the adding-doubling algorithm for non-fluorescent samples. The method is validated by comparing the spectral and angular transmittance and reflectance characteristics obtained with the extended algorithm with the results obtained using Monte Carlo simulations. The agreement using both methods is within 2%. However, the adding-doubling method achieves a reduction of the calculation time by a factor of 400. Due to the short calculation time, the extended adding-doubling method is very useful when fluorescent layers have to be optimized in an iterative process.

© 2012 OSA

OCIS Codes
(260.2510) Physical optics : Fluorescence
(290.0290) Scattering : Scattering

ToC Category:

Original Manuscript: May 30, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 16, 2012
Published: July 20, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Sven Leyre, Guy Durinck, Bart Van Giel, Wouter Saeys, Johan Hofkens, Geert Deconinck, and Peter Hanselaer, "Extended adding-doubling method for fluorescent applications," Opt. Express 20, 17856-17872 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt.32(19), 3585–3595 (1993). [CrossRef] [PubMed]
  2. A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express16(17), 13188–13202 (2008). [CrossRef] [PubMed]
  3. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med.21(2), 166–178 (1997). [CrossRef] [PubMed]
  4. I. Seo, J. Jung, B. J. Oh, and K. Whang, “Improvement of luminance and luminous efficacy of mercury-free, flat fluorescent lamp by optimizing phosphor profile,” IEEE Trans. Plasma Sci.38(5), 1097–1100 (2010). [CrossRef]
  5. J. P. You, N. T. Tran, Y. Lin, Y. He, and F. G. Shi, “Phosphor-concentration-dependent characteristics of white LEDs in different current regulation modes,” J. Electron. Mater.38(6), 761–766 (2009). [CrossRef]
  6. J. H. Park and J. H. Ko, “Optimization of the emitting structure of flat fluorescent lamps for LCD backlight applications,” J. Opt. Soc. Korea11(3), 118–123 (2007). [CrossRef]
  7. P. Chung, H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A25(1), 61–66 (2007). [CrossRef]
  8. W. G. J. H. M. van Sark, “Enhancement of solar cell performance by employing planar spectral converters,” Appl. Phys. Lett.87(15), 151117 (2005). [CrossRef]
  9. E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl.19(3), 345–351 (2011). [CrossRef]
  10. D. Bera, S. Maslov, L. Qian, J. S. Yoo, and P. H. Holloway, “Optimization of the yellow phosphor concentration and layer thickness for down-conversion of blue to white light,” J. Disp. Technol.6(12), 645–651 (2010). [CrossRef]
  11. R. G. Young and E. G. F. Arnott, “The effect of phosphor coating weight on the lumen output of luorescent lamps,” J. Electrochem. Soc.112(10), 982–984 (1965). [CrossRef]
  12. W.-T. Chien, C.-C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express15(12), 7572–7577 (2007). [CrossRef] [PubMed]
  13. Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Technol. Lett.23(9), 552–554 (2011). [CrossRef]
  14. C. C. Chang, R.-L. Chern, C. C. Chang, C.-C. Chu, J. Y. Chi, J.-C. Su, I.-M. Chan, and J.-F. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys.44(8), 6056–6061 (2005). [CrossRef]
  15. D.-Y. Kang, E. Wu, and D.-M. Wang, “Modeling white light-emitting diodes with phosphor layers,” Appl. Phys. Lett.89(23), 231102 (2006). [CrossRef]
  16. J. Y. Chi, J.-S. Chen, C.-Y. Liu, C.-W. Chu, and K.-H. Chiang, “Phosphor converted LEDs with omni-directional-reflector coating,” Opt. Express17(26), 23530–23535 (2009). [CrossRef] [PubMed]
  17. J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys.38(10), 5788–5798 (2011). [CrossRef] [PubMed]
  18. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt.32(4), 559–568 (1993). [CrossRef] [PubMed]
  19. G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. Lond.11(0), 545–556 (1860). [CrossRef]
  20. Z. Zhang, P. Yang, G. Kattawar, H.-L. Huang, T. Greenwald, J. Li, B. A. Baum, D. K. Zhou, and Y. Hu, “A fast infrared radiative transfer model based on the adding–doubling method for hyperspectral remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transf.105(2), 243–263 (2007). [CrossRef]
  21. G. N. Plass, G. W. Kattawar, and F. E. Catchings, “Matrix operator theory of radiative transfer. 1: Rayleigh scattering,” Appl. Opt.12(2), 314–329 (1973). [CrossRef] [PubMed]
  22. P. J. Flatau and G. L. Stephens, “On the fundamental solution of the radiative transfer equation,” J. Geophys. Res.93(D9), 11037–11050 (1988). [CrossRef]
  23. H. G. Völz, Industrial color testing, Fundamentals and Techniques (Wiley-VCH, 2001)
  24. S. N. Thennadil, “Relationship between the Kubelka-Munk scattering and radiative transfer coefficients,” J. Opt. Soc. Am. A25(7), 1480–1485 (2008). [CrossRef] [PubMed]
  25. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review on the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  26. A. Rosema, W. Verhoef, J. Schroote, and J. F. H. Snel, “Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements,” Remote Sens. Environ.37(2), 117–130 (1991). [CrossRef]
  27. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  28. W. J. Wiscombe, “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiat. Transf.16(8), 637–658 (1976). [CrossRef]
  29. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J.93, 70–83 (1941). [CrossRef]
  30. J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, and M. J. C. Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol.42(11), 2255–2261 (1997). [CrossRef] [PubMed]
  31. W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt.47(7), 908–919 (2008). [CrossRef] [PubMed]
  32. D. Yudovsky and L. Pilon, “Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media,” Appl. Opt.49(31), 6072–6084 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited