OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Maximum precision closed-form solution for localizing diffraction-limited spots in noisy images

Joshua D. Larkin and Peter R. Cook  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18478-18493 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Super-resolution techniques like PALM and STORM require accurate localization of single fluorophores detected using a CCD. Popular localization algorithms inefficiently assume each photon registered by a pixel can only come from an area in the specimen corresponding to that pixel (not from neighboring areas), before iteratively (slowly) fitting a Gaussian to pixel intensity; they fail with noisy images. We present an alternative; a probability distribution extending over many pixels is assigned to each photon, and independent distributions are joined to describe emitter location. We compare algorithms, and recommend which serves best under different conditions. At low signal-to-noise ratios, ours is 2-fold more precise than others, and 2 orders of magnitude faster; at high ratios, it closely approximates the maximum likelihood estimate.

© 2012 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy
(100.4999) Image processing : Pattern recognition, target tracking

ToC Category:
Image Processing

Original Manuscript: June 8, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 22, 2012
Published: July 27, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Joshua D. Larkin and Peter R. Cook, "Maximum precision closed-form solution for localizing diffraction-limited spots in noisy images," Opt. Express 20, 18478-18493 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  2. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  3. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86(2), 1185–1200 (2004). [CrossRef] [PubMed]
  4. A. V. Abraham, S. Ram, J. Chao, E. S. Ward, and R. J. Ober, “Quantitative study of single molecule location estimation techniques,” Opt. Express17(26), 23352–23373 (2009). [CrossRef] [PubMed]
  5. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods7(5), 377–381 (2010). [CrossRef] [PubMed]
  6. P. N. Hedde, J. Fuchs, F. Oswald, J. Wiedenmann, and G. U. Nienhaus, “Online image analysis software for photoactivation localization microscopy,” Nat. Methods6(10), 689–690 (2009). [CrossRef] [PubMed]
  7. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7(5), 373–375 (2010). [CrossRef] [PubMed]
  8. S. Wolter, M. SchãœTtpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010). [CrossRef] [PubMed]
  9. S. J. Holden, S. Uphoff, and A. N. Kapanidis, “DAOSTORM: an algorithm for high- density super-resolution microscopy,” Nat. Methods8(4), 279–280 (2011). [CrossRef] [PubMed]
  10. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001). [CrossRef] [PubMed]
  11. J. D. Larkin, N. G. Publicover, and J. L. Sutko, “Photon event distribution sampling: an image formation technique for scanning microscopes that permits tracking of sub-diffraction particles with high spatial and temporal resolutions,” J. Microsc.241(1), 54–68 (2011). [CrossRef] [PubMed]
  12. K. A. Winick, “Cramer-Rao lower bounds on the performance of charge-coupled-device optical position estimators,” J. Opt. Soc. Am. A3(11), 1809–1815 (1986). [CrossRef]
  13. Derek Elsaesser, “The discrete probability density method for emitter geolocation,” in Canadian Conference on Electrical and Computer Engineering, 2006. CCECE ’06 (IEEE, 2006), 25–30.
  14. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  15. T. A. Laurence and B. A. Chromy, “Efficient maximum likelihood estimator fitting of histograms,” Nat. Methods7(5), 338–339 (2010). [CrossRef] [PubMed]
  16. A. Löschberger, S. van de Linde, M.-C. Dabauvalle, B. Rieger, M. Heilemann, G. Krohne, and M. Sauer, “Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution,” J. Cell Sci.125(3), 570–575 (2012). [CrossRef] [PubMed]
  17. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl.47(33), 6172–6176 (2008). [CrossRef] [PubMed]
  18. J. B. Pawley, “Points, pixels, and gray levels: digitizing image data,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  19. D. R. Larson, “The economy of photons,” Nat. Methods7(5), 357–359 (2010). [CrossRef] [PubMed]
  20. A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, “Fast, bias-free algorithm for tracking single particles with variable size and shape,” Opt. Express16(18), 14064–14075 (2008). [CrossRef] [PubMed]
  21. S. B. Andersson, “Precise localization of fluorescent probes without numerical fitting,” 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007 252–255 (2007).
  22. P. G. Hoel, Introduction to Mathematical Statistics, 5th ed. (Wiley, 1984).
  23. M. Xu and P. R. Cook, “Similar active genes cluster in specialized transcription factories,” J. Cell Biol.181(4), 615–623 (2008). [CrossRef] [PubMed]
  24. R. Tam, L. S. Shopland, C. V. Johnson, J. A. McNeil, and J. B. Lawrence, “Applications of RNA FISH for visualizing gene expression and nuclear architecture,” in Fish, 1st ed. (Oxford University Press, USA, 2002), 93–118.
  25. A. Papantonis, J. D. Larkin, Y. Wada, Y. Ohta, S. Ihara, T. Kodama, and P. R. Cook, “Active RNA polymerases: mobile or immobile molecular machines?” PLoS Biol.8(7), e1000419 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: PDF (864 KB)     
» Media 2: AVI (3127 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited