OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Processing method of spectral measurement using F-P etalon and ICCD

Jun Huang, Yong Ma, Bo Zhou, Hao Li, Yin Yu, and Kun Liang  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18568-18578 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4550 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A processing method for the precise acquisition of 1D interference spectrum from the 2D Fabry-PĂ©rot(F-P) fringe pattern is proposed in the paper. Current methods can only measure the spectrum with full-pixel accuracy. The new method is capable to achieve the sub-pixel accuracy as well as reduce the noise by taking full advantage of the 2D image information and analyzing the statistical values of pixels in a comprehensive way. Experimental results show that the accuracy of the measured Brillouin shift and linewidth is around several MHzs, which is significantly improved compared to methods with full-pixel accuracy.

© 2012 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(200.4560) Optics in computing : Optical data processing
(280.3640) Remote sensing and sensors : Lidar
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Remote Sensing

Original Manuscript: May 25, 2012
Revised Manuscript: July 21, 2012
Manuscript Accepted: July 24, 2012
Published: July 30, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Jun Huang, Yong Ma, Bo Zhou, Hao Li, Yin Yu, and Kun Liang, "Processing method of spectral measurement using F-P etalon and ICCD," Opt. Express 20, 18568-18578 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett.34(17), 2590–2592 (2009). [CrossRef] [PubMed]
  2. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express17(3), 1248–1255 (2009). [CrossRef] [PubMed]
  3. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express19(21), 19845–19854 (2011). [CrossRef] [PubMed]
  4. Q. Zheng, “On the Rayleigh-Brillouin scattering in air,” PhD thesis, University of New Hampshire (2004).
  5. E. S. Fry, J. Katz, D. Liu, and T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt.49(3-4), 411–418 (2002). [CrossRef]
  6. A. Popescu, K. Schorstein, and T. Walther, “A novel approach to a Brillouin–LIDAR for remote sensing of the ocean temperature,” Appl. Phys. B-Lasers Opt.79(8), 955–961 (2004). [CrossRef]
  7. M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of the attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B-Lasers Opt.91(2), 381–385 (2008). [CrossRef]
  8. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt.38(3), 432–440 (1999). [CrossRef] [PubMed]
  9. W. Gong, J. Shi, G. Li, D. Liu, J. W. Katz, and E. S. Fry, “Calibration of edge technique considering variation of Brillouin line width at different temperatures of water,” Appl. Phys. B-Lasers Opt.83(2), 319–322 (2006). [CrossRef]
  10. K. Schorstein, A. Popescu, M. Gobel, and T. Walther, “Remote water temperature measurements based on Brillouin scattering with a frequency doubled pulsed Yb:doped fiber amplifier,” Sensors (Basel Switzerland)8(9), 5820–5831 (2008). [CrossRef]
  11. W. Gong, R. Dai, Z. Sun, X. Ren, J. Shi, G. Li, and D. Liu, “Detecting submerged objects by Brillouin scattering,” Appl. Phys. B-Lasers Opt.79(5), 635–639 (2004). [CrossRef]
  12. J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B-Lasers Opt.90(3-4), 569–571 (2008). [CrossRef]
  13. L. Zhang, D. Zhang, Z. Yang, J. Shi, D. Liu, W. Gong, and E. S. Fry. “Experimental investigation on line width compression of stimulated Brillouin scattering in water,” Appl. Phys. Lett.98(22), 221106 (2011). [CrossRef]
  14. K. Liang, Y. Ma, J. Huang, H. Li, and Y. Yu, “Precise measurement of Brillouin scattering spectrum in the ocean using F–P etalon and ICCD,” Appl. Phys. B-Lasers Opt.105(2), 421–425 (2011). [CrossRef]
  15. S. Li, J. Shi, W. Gong, X. He, and D. Liu, “Real-time detecting of Brillouin scattering in water with ICCD,” Proc. SPIE6028(60281J), 60281J, 60281J-6 (2006). [CrossRef]
  16. X. He, S. Li, and D. Liu, “Detecting of Brillouin shift and sound speed in water with the method of ICCD image by time oriented sequential control,” Proc. SPIE6837(683719), 683719, 683719-7 (2007). [CrossRef]
  17. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt.29(10), 1482–1489 (1990). [CrossRef] [PubMed]
  18. G. M. Fisher, T. L. Killeen, Q. Wu, J. M. Reeves, P. B. Hays, W. A. Gault, S. Brown, and G. G. Shepherd, “Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer,” Appl. Opt.39(24), 4284–4291 (2000). [CrossRef] [PubMed]
  19. M. Hirschberger and G. Ehret, “Simulation and high-precision wavelength determination of noisy 2D Fabry–Pérot interferometric rings for direct-detection Doppler lidar and laser spectroscopy,” Appl. Phys. B-Lasers Opt.103(1), 207–222 (2011). [CrossRef]
  20. E. S. Fry, Y. Emery, X. Quan, and J. W. Katz, “Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean,” Appl. Opt.36(27), 6887–6894 (1997). [CrossRef] [PubMed]
  21. W. Gao, Z. Lv, Y. Dong, and W. He, “A new approach to measure the ocean temperature using Brillouin lidar,” Chin. Opt. Lett.4, 428–431 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited