OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Elastography of soft materials and tissues by holographic imaging of surface acoustic waves

Karan D. Mohan and Amy L. Oldenburg  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 18887-18897 (2012)
http://dx.doi.org/10.1364/OE.20.018887


View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use optical interferometry to capture coherent surface acoustic waves for elastographic imaging. An inverse method is employed to convert multi-frequency data into an elastic depth profile. Using this method, we image elastic properties over a 55 mm range with <5 mm resolution. For relevance to breast cancer detection, we employ a tissue phantom with a tumor-like inclusion. Holographic elastography is also shown to be well-behaved in ex vivo tissue, revealing the subsurface position of a bone. Because digital holography can assess waves over a wide surface area, this constitutes a flexible new platform for large volume and non-invasive elastography.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(090.1995) Holography : Digital holography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 14, 2012
Revised Manuscript: July 2, 2012
Manuscript Accepted: July 10, 2012
Published: August 2, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Karan D. Mohan and Amy L. Oldenburg, "Elastography of soft materials and tissues by holographic imaging of surface acoustic waves," Opt. Express 20, 18887-18897 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-17-18887


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Eskin and J. Ralston, “On the inverse boundary value problem for linear isotropic elasticity,” Inverse Probl.18(3), 907–921 (2002). [CrossRef]
  2. E. R. Engdahl, R. van der Hilst, and R. Buland, “Global teleseismic earthquake relocation with improved travel times and procedures for depth determination,” Bull. Seismol. Soc. Am.88, 722–743 (1998).
  3. B. A. Auld, “General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients,” Wave Motion1(1), 3–10 (1979). [CrossRef]
  4. C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance,” Science318(5847), 76–80 (2007). [CrossRef] [PubMed]
  5. C. P. Buckley, C. Prisacariu, and C. Martin, “Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure,” Polymer (Guildf.)51(14), 3213–3224 (2010). [CrossRef]
  6. A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol.52(6), 1565–1576 (2007). [CrossRef] [PubMed]
  7. L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology128(2), 343–350 (2005). [CrossRef] [PubMed]
  8. L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of the elastic properties of tissue--a review,” Ultrasound Med. Biol.22(8), 959–977 (1996). [CrossRef] [PubMed]
  9. A. Y. Iyo, “Acoustic radiation force impulse imaging - a literature review,” J. Diagn. Med. Sonog.25(4), 204–211 (2009). [CrossRef]
  10. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science269(5232), 1854–1857 (1995). [CrossRef] [PubMed]
  11. K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett.94(15), 154103 (2009). [CrossRef]
  12. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011). [CrossRef] [PubMed]
  13. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  14. F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller, “Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps,” Geophys. J. Int.173(1), 281–298 (2008). [CrossRef]
  15. C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys.88(7), 4394–4400 (2000). [CrossRef]
  16. T. J. Royston, H. A. Mansy, and R. H. Sandler, “Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis,” J. Acoust. Soc. Am.106(6), 3678–3686 (1999). [CrossRef] [PubMed]
  17. X. Zhang and J. F. Greenleaf, “Estimation of tissue’s elasticity with surface wave speed,” J. Acoust. Soc. Am.122(5), 2522–2525 (2007). [CrossRef] [PubMed]
  18. S. Schedin, G. Pedrini, and H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt.39(16), 2853–2857 (2000). [CrossRef] [PubMed]
  19. M. S. Hernández-Montes, C. Pérez-López, and F. M. Santoyo, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt.12(2), 024027 (2007). [CrossRef] [PubMed]
  20. S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, M. Kulesz-Martin, and K. Lee, “Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography,” Opt. Express14(21), 9770–9779 (2006). [CrossRef] [PubMed]
  21. S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt.16(11), 116005 (2011). [CrossRef] [PubMed]
  22. M. Leclercq, M. Karray, V. Isnard, F. Gautier, and P. Picart, “Quantitative evaluation of skin vibration induced by a bone-conduction device using holographic recording in the quasi-time-averaging regime,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DW1C.2.
  23. I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, 1967) p. 3.
  24. N. A. Haskell, “The dispersion of surface waves on multilayered media,” Bull. Seismol. Soc. Am.43, 17–34 (1953).
  25. T. L. Szabo, “Obtaining subsurface profiles from surface−acoustic−wave velocity dispersion,” J. Appl. Phys.46(4), 1448–1454 (1975). [CrossRef]
  26. B. R. Tittmann, L. A. Ahlberg, J. M. Richardson, and R. B. Thompson, “Determination of physical property gradients from measured surface wave dispersion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(5), 500–507 (1987). [CrossRef] [PubMed]
  27. F. I. Karahanoglu, I. Bayram, and D. Van De Ville, “A signal processing approach to generalized 1-D total variation” IEEE T. Signal Process.59, 5265–5274 (2011).
  28. J. Dahl, P. Hansen, S. Jensen, and T. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Numer. Algorithms53(1), 67–92 (2010). [CrossRef]
  29. P. C. Hansen and D. P. O'Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput.14(6), 1487–1503 (1993). [CrossRef]
  30. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  31. K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol.48(22), 3699–3719 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1923 KB)      QuickTime
» Media 2: AVI (1795 KB)      QuickTime
» Media 3: AVI (3220 KB)      QuickTime
» Media 4: AVI (2812 KB)      QuickTime
» Media 5: AVI (1802 KB)      QuickTime
» Media 6: AVI (3220 KB)      QuickTime
» Media 7: AVI (2812 KB)      QuickTime
» Media 8: AVI (1802 KB)      QuickTime
» Media 9: AVI (3220 KB)      QuickTime
» Media 10: AVI (2812 KB)      QuickTime
» Media 11: AVI (1802 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited