OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation

Yi-Cheng Li, Li-Chung Cheng, Chia-Yuan Chang, Chi-Hsiang Lien, Paul J. Campagnola, and Shean-Jen Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19030-19038 (2012)
http://dx.doi.org/10.1364/OE.20.019030


View Full Text Article

Enhanced HTML    Acrobat PDF (1135 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the limits of conventional scanning multiphoton microfabrication is its low throughput due to point-by-point processing. In order to surpass this limit, a multiphoton microfabrication system based on spatiotemporal focusing and patterned excitation has been developed to quickly provide three-dimensional (3D) freeform polymer microstructures. 3D freeform polymer microstructures using Rose Bengal as the photoinitiator are created by sequentially stacking two-dimensional fabricating patterns. The size of each fabrication area can be larger than 300 × 170 μm2 (full width at half maximum). Compared to conventional scanning multiphoton excitation and fixed mask pattern generation, this approach offers freeform microstructures and a greater than three-order increase in fabrication speed. Furthermore, the system is capable of optically sectioning the fabricated microstructures for providing 3D inspection.

© 2012 OSA

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(190.4180) Nonlinear optics : Multiphoton processes
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Laser Microfabrication

History
Original Manuscript: June 1, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 28, 2012
Published: August 3, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Yi-Cheng Li, Li-Chung Cheng, Chia-Yuan Chang, Chi-Hsiang Lien, Paul J. Campagnola, and Shean-Jen Chen, "Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation," Opt. Express 20, 19030-19038 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-17-19030


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  3. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001). [CrossRef]
  4. T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002). [CrossRef]
  5. C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B103(18), 3737–3741 (1999). [CrossRef]
  6. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules33(5), 1514–1523 (2000). [CrossRef]
  7. P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules33(5), 1511–1513 (2000). [CrossRef]
  8. T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater.12(9), 611–614 (2002). [CrossRef]
  9. Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.)20(5), 914–919 (2008). [CrossRef]
  10. P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. (Deerfield Beach Fla.)12(19), 1438–1441 (2000). [CrossRef]
  11. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009). [PubMed]
  12. M. Stoneman, M. Fox, C. Y. Zeng, and V. Raicu, “Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices,” Lab Chip9(6), 819–827 (2009). [CrossRef] [PubMed]
  13. C. E. Olson, M. J. R. Previte, and J. T. Fourkas, “Efficient and robust multiphoton data storage in molecular glasses and highly crosslinked polymers,” Nat. Mater.1(4), 225–228 (2002). [CrossRef] [PubMed]
  14. R. Guo, Z. Li, Z. Jiang, D. Yuan, W. Huang, and A. Xia, “Log-pile photonic crystal fabricated by two-photon photopolymerization,” J. Opt. A, Pure Appl. Opt.7(8), 396–399 (2005). [CrossRef]
  15. Z. B. Sun, X. Z. Dong, S. Nakanishi, W. Q. Chen, X. M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process.86(4), 427–431 (2007). [CrossRef]
  16. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  17. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005). [CrossRef] [PubMed]
  18. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun.281(7), 1796–1805 (2008). [CrossRef] [PubMed]
  19. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A.105(51), 20221–20226 (2008). [CrossRef] [PubMed]
  20. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  21. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express2(3), 696–704 (2011). [CrossRef] [PubMed]
  22. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express20(8), 8939–8948 (2012). [CrossRef] [PubMed]
  23. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett.35(7), 1106–1108 (2010). [CrossRef] [PubMed]
  24. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express18(17), 18086–18094 (2010). [CrossRef] [PubMed]
  25. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett.35(10), 1602–1604 (2010). [CrossRef] [PubMed]
  26. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009). [CrossRef] [PubMed]
  27. C.-Y. Chang, L.-C. Cheng, H.-W. Su, K.-C. Cho, W.-C. Yen, C. Xu, C. Y. Dong, and S.-J. Chen, “Widefield multiphoton microscopy with image-based adaptive optics system,” submitted for publication.
  28. C.-Y. Lin, C.-H. Lien, K.-C. Cho, C.-Y. Chang, N.-S. Chang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Investigation of two-photon excited fluorescence increment via crosslinked bovine serum albumin,” Opt. Express20(13), 13669–13676 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1434 KB)     
» Media 2: AVI (1450 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited