OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

High-throughput optical coherence tomography at 800 nm

Keisuke Goda, Ali Fard, Omer Malik, Gilbert Fu, Alan Quach, and Bahram Jalali  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19612-19617 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report high-throughput optical coherence tomography (OCT) that offers 1,000 times higher axial scan rate than conventional OCT in the 800 nm spectral range. This is made possible by employing photonic time-stretch for chirping a pulse train and transforming it into a passive swept source. We demonstrate a record high axial scan rate of 90.9 MHz. To show the utility of our method, we also demonstrate real-time observation of laser ablation dynamics. Our high-throughput OCT is expected to be useful for industrial applications where the speed of conventional OCT falls short.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(110.4500) Imaging systems : Optical coherence tomography
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4825) Instrumentation, measurement, and metrology : Optical time domain reflectometry

ToC Category:
Imaging Systems

Original Manuscript: April 18, 2012
Revised Manuscript: June 20, 2012
Manuscript Accepted: June 22, 2012
Published: August 13, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Keisuke Goda, Ali Fard, Omer Malik, Gilbert Fu, Alan Quach, and Bahram Jalali, "High-throughput optical coherence tomography at 800 nm," Opt. Express 20, 19612-19617 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007). [CrossRef]
  3. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  4. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  5. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett.33(12), 1318–1320 (2008). [CrossRef] [PubMed]
  6. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express14(24), 11575–11584 (2006). [CrossRef] [PubMed]
  7. R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman, “Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry,” Opt. Express15(23), 15464–15479 (2007). [CrossRef] [PubMed]
  8. K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett.93(3), 031106 (2008). [CrossRef]
  9. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007). [CrossRef]
  10. M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum.81(3), 033705 (2010). [CrossRef] [PubMed]
  11. B. G. Goode, “Optical coherence tomography: OCT aims for industrial application,” Laser Focus World. Sep. (2009).
  12. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009). [CrossRef]
  13. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009). [CrossRef] [PubMed]
  14. S. Gupta and B. Jalali, “Time stretch enhanced recording oscilloscope,” Appl. Phys. Lett.94(4), 041105 (2009). [CrossRef]
  15. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol.21(12), 3085–3103 (2003). [CrossRef]
  16. J. H. Yoo, O. V. Borisov, X. Mao, and R. E. Russo, “Existence of phase explosion during laser ablation and its effects on inductively coupled plasma-mass spectroscopy,” Anal. Chem.73(10), 2288–2293 (2001). [CrossRef] [PubMed]
  17. C. Phipps, Laser Ablation and its Applications (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited