OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

A fiber optic probe design to measure depth- limited optical properties in-vivo with Low-coherence Enhanced Backscattering (LEBS) Spectroscopy

Nikhil N. Mutyal, Andrew Radosevich, Bradley Gould, Jeremy D. Rogers, Andrew Gomes, Vladimir Turzhitsky, and Vadim Backman  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 19643-19657 (2012)
http://dx.doi.org/10.1364/OE.20.019643


View Full Text Article

Enhanced HTML    Acrobat PDF (1944 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about scattering phase function is preserved. Our group has shown the ability to measure the spatial backscattering impulse response function along with depth-selective optical properties in tissue ex-vivo using LEBS. Here we report the design and implementation of a lens-free fiber optic LEBS probe capable of providing depth-limited measurements of the reduced scattering coefficient in-vivo. Experimental measurements combined with Monte Carlo simulation of scattering phantoms consisting of polystyrene microspheres in water are used to validate the performance of the probe. Additionally, depth-limited capabilities are demonstrated using Monte Carlo modeling and experimental measurements from a two-layered phantom.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1350) Scattering : Backscattering

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 6, 2012
Revised Manuscript: August 3, 2012
Manuscript Accepted: August 6, 2012
Published: August 13, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Nikhil N. Mutyal, Andrew Radosevich, Bradley Gould, Jeremy D. Rogers, Andrew Gomes, Vladimir Turzhitsky, and Vadim Backman, "A fiber optic probe design to measure depth- limited optical properties in-vivo with Low-coherence Enhanced Backscattering (LEBS) Spectroscopy," Opt. Express 20, 19643-19657 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-18-19643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998). [PubMed]
  2. A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993). [CrossRef] [PubMed]
  3. C. Booth, G. Brady, and C. S. Potten, “Crowd control in the crypt,” Nat. Med.8(12), 1360–1361 (2002). [CrossRef] [PubMed]
  4. R. Barer and S. Joseph, “Refractometry of living cells,” J. Microscop. Sci.s3–95, 399–423 (1954).
  5. J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009). [CrossRef] [PubMed]
  6. V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011). [CrossRef] [PubMed]
  7. H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009). [CrossRef] [PubMed]
  8. B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett.33(16), 1783–1785 (2008). [CrossRef] [PubMed]
  9. T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, and L. Marcu, “Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm,” Appl. Opt.43(14), 2846–2860 (2004). [CrossRef] [PubMed]
  10. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett.30(10), 1159–1161 (2005). [CrossRef] [PubMed]
  11. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett.29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  12. A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006). [CrossRef] [PubMed]
  13. S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt.36(1), 136–143 (1997). [CrossRef] [PubMed]
  14. V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011). [CrossRef] [PubMed]
  15. J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011). [CrossRef] [PubMed]
  16. J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  17. Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, “Depth-resolved low-coherence enhanced backscattering,” Opt. Lett.30(7), 741–743 (2005). [CrossRef] [PubMed]
  18. V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010). [CrossRef] [PubMed]
  19. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express13(25), 10392–10405 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited