OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans

Boy Braaf, Koenraad A. Vermeer, Kari V. Vienola, and Johannes F. de Boer  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20516-20534 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (17751 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In conventional phase-resolved OCT blood flow is detected from phase changes between successive A-scans. Especially in high-speed OCT systems this results in a short evaluation time interval. This method is therefore often unable to visualize complete vascular networks since low flow velocities cause insufficient phase changes. This problem was solved by comparing B-scans instead of successive A-scans to enlarge the time interval. In this paper a detailed phase-noise analysis of our OCT system is presented in order to calculate the optimal time intervals for visualization of the vasculature of the human retina and choroid. High-resolution images of the vasculature of a healthy volunteer taken with various time intervals are presented to confirm this analysis. The imaging was performed with a backstitched B-scan in which pairs of small repeated B-scans are stitched together to independently control the time interval and the imaged lateral field size. A time interval of ≥2.5 ms was found effective to image the retinal vasculature down to the capillary level. The higher flow velocities of the choroid allowed a time interval of 0.64 ms to reveal its dense vasculature. Finally we analyzed depth-resolved histograms of volumetric phase-difference data to assess changes in amount of blood flow with depth. This analysis indicated different flow regimes in the retina and the choroid.

© 2012 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 6, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: August 13, 2012
Published: August 22, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Boy Braaf, Koenraad A. Vermeer, Kari V. Vienola, and Johannes F. de Boer, "Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans," Opt. Express 20, 20516-20534 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett.20(11), 1337–1339 (1995). [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  3. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  4. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000). [CrossRef] [PubMed]
  5. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  6. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by optical micro-angiography at 1.3 mum wavelength,” Opt. Express15(18), 11402–11412 (2007). [CrossRef] [PubMed]
  7. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009). [CrossRef] [PubMed]
  8. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997). [CrossRef] [PubMed]
  9. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  10. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  11. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000). [CrossRef] [PubMed]
  12. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010). [CrossRef] [PubMed]
  13. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011). [CrossRef] [PubMed]
  14. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express15(20), 12636–12653 (2007). [CrossRef] [PubMed]
  15. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010). [CrossRef] [PubMed]
  16. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  17. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express15(2), 408–422 (2007). [CrossRef] [PubMed]
  18. V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun.208(4-6), 209–214 (2002). [CrossRef]
  19. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  20. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008). [CrossRef] [PubMed]
  21. A. S. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010). [CrossRef] [PubMed]
  22. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009). [CrossRef] [PubMed]
  23. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008). [CrossRef] [PubMed]
  24. M. R. Hee, Optical Coherence Tomography of the Eye (Massachusetts Institute of Technology, 1997).
  25. B. Braaf, K. A. Vermeer, V. A. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011). [CrossRef] [PubMed]
  26. S. Makita, J. Franck, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011). [CrossRef] [PubMed]
  27. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011). [CrossRef] [PubMed]
  28. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004). [CrossRef] [PubMed]
  29. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med. Image Comput. Comput. Assist. Interv.12(Pt 1), 100–107 (2009). [PubMed]
  30. R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci.52(6), 3908–3913 (2011). [CrossRef] [PubMed]
  31. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  32. G. Bennett and R. B. Rabbetts, “Distribution and ocular dioptics of ametropia,” in Bennett and Rabbetts' Clinical Visual Optics, R. B. Rabbetts, ed. (Elsevier Science, 1998), pp. 406–420.
  33. A. Agarwol, Grass' Atlas of Macular Diseases (Elsevier Saunders, 2012).
  34. C. E. Riva and L. Schmetterer, “Microcirculation of the ocular fundus,” in Comprehensive Physiology, (Wiley-Blackwell, 2011), pp. 735–765.
  35. Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010). [CrossRef] [PubMed]
  36. T. J. Fallon, P. Chowiencyzk, and E. M. Kohner, “Measurement of retinal blood flow in diabetes by the blue-light entoptic phenomenon,” Br. J. Ophthalmol.70(1), 43–46 (1986). [CrossRef] [PubMed]
  37. P. Hossain, J. Liversidge, M. J. Cree, A. Manivannan, P. Vieira, P. F. Sharp, G. C. Brown, and J. V. Forrester, “In vivo cell tracking by scanning laser ophthalmoscopy: quantification of leukocyte kinetics,” Invest. Ophthalmol. Vis. Sci.39(10), 1879–1887 (1998). [PubMed]
  38. T. Okanouchi, F. Shiraga, I. Takasu, Y. Tsuchida, and H. Ohtsuki, “Evaluation of the dynamics of choroidal circulation in experimental acute hypertensionusing indocyanine green-stained leukocytes,” Jpn. J. Ophthalmol.47(6), 572–577 (2003). [CrossRef] [PubMed]
  39. L. Zhu, Y. Zheng, C. H. von Kerczek, L. D. Topoleski, and R. W. Flower, “Feasibility of extracting velocity distribution in choriocapillaris in human eyes from ICG dye angiograms,” J. Biomech. Eng.128(2), 203–209 (2006). [CrossRef] [PubMed]
  40. R. W. Flower, A. W. Fryczkowski, and D. S. McLeod, “Variability in choriocapillaris blood flow distribution,” Invest. Ophthalmol. Vis. Sci.36(7), 1247–1258 (1995). [PubMed]
  41. I. Takasu, F. Shiraga, T. Okanouchi, Y. Tsuchida, and H. Ohtsuki, “Evaluation of leukocyte dynamics in choroidal circulation with indocyanine green-stained leukocytes,” Invest. Ophthalmol. Vis. Sci.41(10), 2844–2848 (2000). [PubMed]
  42. V. F. Duma, K. S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt.50(29), 5735–5749 (2011). [CrossRef] [PubMed]
  43. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005). [CrossRef] [PubMed]
  44. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010). [CrossRef] [PubMed]
  45. A. W. Fryczkowski and M. D. Sherman, “Scanning electron microscopy of human ocular vascular casts: the submacular choriocapillaris,” Acta Anat. (Basel)132(4), 265–269 (1988). [CrossRef] [PubMed]
  46. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012). [CrossRef] [PubMed]
  47. F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express20(1), 385–396 (2012). [CrossRef] [PubMed]
  48. M. K. Leung, A. Mariampillai, B. A. Standish, K. K. Lee, N. R. Munce, I. A. Vitkin, and V. X. Yang, “High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography,” Opt. Lett.34(18), 2814–2816 (2009). [CrossRef] [PubMed]
  49. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986). [PubMed]
  50. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994). [PubMed]
  51. J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci.46(3), 1033–1038 (2005). [CrossRef] [PubMed]
  52. E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A-Phys.156(1), 8–13 (2009). [CrossRef]
  53. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: PDF (3202 KB)     
» Media 2: PDF (2786 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited