OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain

L. Silvestri, A. Bria, L. Sacconi, G. Iannello, and F. S. Pavone  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20582-20598 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2679 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Elucidating the neural pathways that underlie brain function is one of the greatest challenges in neuroscience. Light sheet based microscopy is a cutting edge method to map cerebral circuitry through optical sectioning of cleared mouse brains. However, the image contrast provided by this method is not sufficient to resolve and reconstruct the entire neuronal network. Here we combined the advantages of light sheet illumination and confocal slit detection to increase the image contrast in real time, with a frame rate of 10 Hz. In fact, in confocal light sheet microscopy (CLSM), the out-of-focus and scattered light is filtered out before detection, without multiple acquisitions or any post-processing of the acquired data. The background rejection capabilities of CLSM were validated in cleared mouse brains by comparison with a structured illumination approach. We show that CLSM allows reconstructing macroscopic brain volumes with sub-cellular resolution. We obtained a comprehensive map of Purkinje cells in the cerebellum of L7-GFP transgenic mice. Further, we were able to trace neuronal projections across brain of thy1-GFP-M transgenic mice. The whole-brain high-resolution fluorescence imaging assured by CLSM may represent a powerful tool to navigate the brain through neuronal pathways. Although this work is focused on brain imaging, the macro-scale high-resolution tomographies affordable with CLSM are ideally suited to explore, at micron-scale resolution, the anatomy of different specimens like murine organs, embryos or flies.

© 2012 OSA

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: May 15, 2012
Revised Manuscript: July 9, 2012
Manuscript Accepted: July 9, 2012
Published: August 23, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

L. Silvestri, A. Bria, L. Sacconi, G. Iannello, and F. S. Pavone, "Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain," Opt. Express 20, 20582-20598 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Sotelo, “Viewing the brain through the master hand of Ramon y Cajal,” Nat. Rev. Neurosci.4(1), 71–77 (2003). [CrossRef] [PubMed]
  2. J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development136(12), 1963–1975 (2009). [CrossRef] [PubMed]
  3. P. J. Keller and H. U. Dodt, “Light sheet microscopy of living or cleared specimens,” Curr. Opin. Neurobiol.22(1), 138–143 (2012). [CrossRef] [PubMed]
  4. P. J. Keller, F. Pampaloni, and E. H. Stelzer, “Life sciences require the third dimension,” Curr. Opin. Cell Biol.18(1), 117–124 (2006). [CrossRef] [PubMed]
  5. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods8(10), 811–819 (2011). [CrossRef] [PubMed]
  6. J. A. Buytaert and J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution,” J. Biomed. Opt.12(1), 014039 (2007). [CrossRef] [PubMed]
  7. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods4(4), 331–336 (2007). [CrossRef] [PubMed]
  8. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express16(25), 20306–20316 (2008). [CrossRef] [PubMed]
  9. E. Fuchs, J. Jaffe, R. Long, and F. Azam, “Thin laser light sheet microscope for microbial oceanography,” Opt. Express10(2), 145–154 (2002). [PubMed]
  10. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008). [CrossRef] [PubMed]
  11. J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett.32(17), 2608–2610 (2007). [CrossRef] [PubMed]
  12. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  13. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science322(5904), 1065–1069 (2008). [CrossRef] [PubMed]
  14. H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Grössenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Annalen der Physik10, 1–39 (1903).
  15. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods5(2), 159–161 (2008). [CrossRef] [PubMed]
  16. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007). [PubMed]
  17. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993). [CrossRef] [PubMed]
  18. S. Kalchmair, N. Jährling, K. Becker, and H. U. Dodt, “Image contrast enhancement in confocal ultramicroscopy,” Opt. Lett.35(1), 79–81 (2010). [CrossRef] [PubMed]
  19. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010). [CrossRef] [PubMed]
  20. J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt.15(1), 016027 (2010). [CrossRef] [PubMed]
  21. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat Commun3, 632 (2012). [CrossRef] [PubMed]
  22. M. Tomomura, D. S. Rice, J. I. Morgan, and M. Yuzaki, “Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein,” Eur. J. Neurosci.14(1), 57–63 (2001). [CrossRef] [PubMed]
  23. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000). [CrossRef] [PubMed]
  24. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005). [CrossRef] [PubMed]
  25. W. Spalteholz, Uber das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Uber Knochenfärbung. (S. Hirzel, Leipzig, 1914).
  26. M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001). [CrossRef] [PubMed]
  27. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987). [CrossRef] [PubMed]
  28. G. Cox and C. J. Sheppard, “Practical limits of resolution in confocal and non-linear microscopy,” Microsc. Res. Tech.63(1), 18–22 (2004). [CrossRef] [PubMed]
  29. J. Jankowski, A. Miething, K. Schilling, and S. L. Baader, “Physiological purkinje cell death is spatiotemporally organized in the developing mouse cerebellum,” Cerebellum8(3), 277–290 (2009). [CrossRef] [PubMed]
  30. J. Altman and S. A. Bayer, “Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells,” J. Comp. Neurol.231(1), 42–65 (1985). [CrossRef] [PubMed]
  31. R. R. Buss, W. Sun, and R. W. Oppenheim, “Adaptive roles of programmed cell death during nervous system development,” Annu. Rev. Neurosci.29(1), 1–35 (2006). [CrossRef] [PubMed]
  32. M. Bauman and T. L. Kemper, “Histoanatomic observations of the brain in early infantile autism,” Neurology35(6), 866–874 (1985). [CrossRef] [PubMed]
  33. T. L. Kemper and M. Bauman, “Neuropathology of infantile autism,” J. Neuropathol. Exp. Neurol.57(7), 645–652 (1998). [CrossRef] [PubMed]
  34. E. R. Ritvo, B. J. Freeman, A. B. Scheibel, T. Duong, H. Robinson, D. Guthrie, and A. Ritvo, “Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report,” Am. J. Psychiatry143(7), 862–866 (1986). [PubMed]
  35. M. Helmstaedter, K. L. Briggman, and W. Denk, “3D structural imaging of the brain with photons and electrons,” Curr. Opin. Neurobiol.18(6), 633–641 (2008). [CrossRef] [PubMed]
  36. J. W. Lichtman, J. Livet, and J. R. Sanes, “A technicolour approach to the connectome,” Nat. Rev. Neurosci.9(6), 417–422 (2008). [CrossRef] [PubMed]
  37. O. Sporns, G. Tononi, and R. Kötter, “The human connectome: A structural description of the human brain,” PLOS Comput. Biol.1(4), e42 (2005). [CrossRef] [PubMed]
  38. K. L. Briggman, M. Helmstaedter, and W. Denk, “Wiring specificity in the direction-selectivity circuit of the retina,” Nature471(7337), 183–188 (2011). [CrossRef] [PubMed]
  39. W. K. Jeong, J. Schneider, S. G. Turney, B. E. Faulkner-Jones, D. Meyer, R. Westermann, R. C. Reid, J. Lichtman, and H. Pfister, “Interactive histology of large-scale biomedical image stacks,” IEEE Trans. Vis. Comput. Graph.16(6), 1386–1395 (2010). [CrossRef] [PubMed]
  40. S. Mori, K. Oishi, and A. V. Faria, “White matter atlases based on diffusion tensor imaging,” Curr. Opin. Neurol.22(4), 362–369 (2009). [CrossRef] [PubMed]
  41. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  42. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011). [CrossRef] [PubMed]
  43. H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci.14(11), 1481–1488 (2011). [CrossRef] [PubMed]
  44. K. Becker, N. Jährling, S. Saghafi, R. Weiler, and H. U. Dodt, “Chemical clearing and dehydration of GFP expressing mouse brains,” PLoS ONE7(3), e33916 (2012). [CrossRef] [PubMed]
  45. A. Ertürk, C. P. Mauch, F. Hellal, F. Förstner, T. Keck, K. Becker, N. Jährling, H. Steffens, M. Richter, M. Hübener, E. Kramer, F. Kirchhoff, H. U. Dodt, and F. Bradke, “Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury,” Nat. Med.18(1), 166–171 (2011). [CrossRef] [PubMed]
  46. U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods9(7), 730–733 (2012). [CrossRef] [PubMed]
  47. R. Tomer, K. Khairy, F. Amat, and P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods9(7), 755–763 (2012). [CrossRef] [PubMed]
  48. A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science330(6009), 1404–1408 (2010). [CrossRef] [PubMed]
  49. D. Mayerich, L. Abbott, and B. McCormick, “Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain,” J. Microsc.231(1), 134–143 (2008). [CrossRef] [PubMed]
  50. N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci4, 1 (2010). [PubMed]
  51. A. B. Arrenberg, D. Y. Stainier, H. Baier, and J. Huisken, “Optogenetic control of cardiac function,” Science330(6006), 971–974 (2010). [CrossRef] [PubMed]
  52. A. Bria, L. Silvestri, L. Sacconi, F. S. Pavone, and G. Iannello, “Stitching Terabyte-sized 3D images acquired in confocal ultramicroscopy,” presented at the IEEE International Symposium on Biomedical Imaging (ISBI 2012), Barcelona, Spain, 2–5 May 2012.
  53. P. J. Bex and W. Makous, “Spatial frequency, phase, and the contrast of natural images,” J. Opt. Soc. Am. A19(6), 1096–1106 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2024 KB)     
» Media 2: MOV (2373 KB)     
» Media 3: MOV (6631 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited