OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Perfect transmission through Anderson localized systems mediated by a cluster of localized modes

Wonjun Choi, Q-Han Park, and Wonshik Choi  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20721-20729 (2012)
http://dx.doi.org/10.1364/OE.20.020721


View Full Text Article

Enhanced HTML    Acrobat PDF (1763 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a strongly scattering medium where Anderson localization takes place, constructive interference of local non-propagating waves dominate over the incoherent addition of propagating waves. This results in the disappearance of propagating waves within the medium, which significantly attenuates energy transmission. In this numerical study performed in the optical regime, we systematically found resonance modes, called eigenchannels, of a 2-D Anderson localized system that allow for the near-perfect energy transmission. We observed that the internal field distribution of these eigenchannels exhibit dense clustering of localized modes. This strongly suggests that the clustered resonance modes facilitate long-range energy flow of local waves. Our study explicitly elucidates the interplay between wave localization and transmission enhancement in the Anderson localization regime.

© 2012 OSA

OCIS Codes
(260.2160) Physical optics : Energy transfer
(290.7050) Scattering : Turbid media

ToC Category:
Scattering

History
Original Manuscript: June 27, 2012
Revised Manuscript: August 15, 2012
Manuscript Accepted: August 19, 2012
Published: August 24, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Wonjun Choi, Q-Han Park, and Wonshik Choi, "Perfect transmission through Anderson localized systems mediated by a cluster of localized modes," Opt. Express 20, 20721-20729 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-18-20721


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev.109(5), 1492–1505 (1958). [CrossRef]
  2. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett.53(22), 2169–2172 (1984). [CrossRef]
  3. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997). [CrossRef]
  4. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446(7131), 52–55 (2007). [CrossRef] [PubMed]
  5. O. N. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun.51(6), 381–384 (1984). [CrossRef]
  6. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008). [CrossRef] [PubMed]
  7. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics, in press. (2012). [CrossRef] [PubMed]
  8. C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys.69(3), 731–808 (1997). [CrossRef]
  9. Z. Shi and A. Z. Genack, “Transmission Eigenvalues and the bare conductance in the crossover to Anderson localization,” Phys. Rev. Lett.108(4), 043901 (2012). [CrossRef] [PubMed]
  10. W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B83(13), 134207 (2011). [CrossRef]
  11. J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson Localized 1D systems,” Phys. Rev. Lett.94(11), 113903 (2005). [CrossRef] [PubMed]
  12. J. B. Pendry, “Quasi-extended electron-states in strongly disordered-systems,” J. Phys. C. Solid State20(5), 733–742 (1987). [CrossRef]
  13. C. Katherine, “V Phase-Measurement Interferometry Techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), 349–393.
  14. S. E. Skipetrov and B. A. van Tiggelen, “Dynamics of Anderson Localization in Open 3D Media,” Phys. Rev. Lett.96(4), 043902 (2006). [CrossRef] [PubMed]
  15. M. A. Noginov, Tutorials in Complex Photonic Media (SPIE Press, 2009), 25, 696 p., 696 p. of plates.
  16. S. Zhang and A. Z. Genack, “Statistics of diffusive and localized fields in the vortex core,” Phys. Rev. Lett.99(20), 203901 (2007). [CrossRef] [PubMed]
  17. R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: A microwave study,” Phys. Rev. Lett.104(9), 093901 (2010). [CrossRef] [PubMed]
  18. R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, “Ultrafast evolution of photonic eigenstates in k-space,” Nat. Phys.3(6), 401–405 (2007). [CrossRef]
  19. M. B. Kevin Vynck, F. Riboli, D. S. Wiersma, “Disordered optical modes for photon management.” http://arxiv.org/abs/1202.4601 .
  20. J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Philos. Trans. R. Soc. Lond., A Contain. Pap. Math. Phys. Character205(387-401), 237–288 (1906). [CrossRef]
  21. N. Cherroret, S. E. Skipetrov, and B. A. van Tiggelen, “Transverse confinement of waves in three-dimensional random media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 056603 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited