OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Impact of sub-pixel variations on ocean color remote sensing products

Zhongping Lee, Chuanmin Hu, Robert Arnone, and Zhen Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 20844-20854 (2012)
http://dx.doi.org/10.1364/OE.20.020844


View Full Text Article

Enhanced HTML    Acrobat PDF (1381 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Passive remote sensing of the Earth system has used spatial resolutions ranging from meters to kilometers. It is thus necessary to understand how data products with different spatial resolutions can be compared with each other, and how sub-pixel variations may affect data comparison. This is particularly important for ocean color remote sensing where the measured signal (water-leaving radiance or remote sensing reflectance) is a non-linear function of sub-surface constituents. As a result, products at low resolution are not necessarily arithmetic or geometric means of those at higher resolution. Here, we developed analytical expressions to link ocean color properties derived from high- and low-resolution data, and the proof-of-concept is further demonstrated with both simple examples and measurements of MERIS full-resolution (FR) and reduced resolution (RR). These results suggest that current global chlorophyll concentration is likely underestimated due to the coarse spatial resolutions. Application of the expressions will facilitate cross-sensor comparisons and may also reduce uncertainties.

© 2012 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 10, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: August 24, 2012
Published: August 28, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Zhongping Lee, Chuanmin Hu, Robert Arnone, and Zhen Liu, "Impact of sub-pixel variations on ocean color remote sensing products," Opt. Express 20, 20844-20854 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-19-20844


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. B. Eisner and T. J. Cowles, “Spatial variations in phytoplankton pigment ratios, optical properties, and environmental gradients in Oregon coast surface waters,” J. Geophys. Res. 110(C10), C10S14 (2005), doi:. [CrossRef]
  2. C. Hu, B. Nababan, D. C. Biggs, and F. E. Muller-Karger, “ Variability of bio-optical properties at sampling stations and implications for remote sensing: a case study in the north-east Gulf of Mexico,” Int. J. Remote Sens. 25(11), 2111–2120 (2004). [CrossRef]
  3. C. B. Schaaf, F. Gao, A. Strahler, W. Lucht, X. Li, T. Tsang, N. C. Strugnell, X. Zhang, Y. Jin, J. P. Muller, P. Lewis, M. Barnsley, P. Hobson, M. Disney, G. Roberts, M. Dunderdale, C. Doll, R. P. d’Entremont, B. Hu, S. Liang, J. L. Privette, and D. Roy, “First Operational BRDF, Albedo and Nadir reflectance products from MODIS,” Remote Sens. Environ. 83(1-2), 135–148 (2002). [CrossRef]
  4. H. R. Gordon and D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19(20), 3428–3430 (1980). [CrossRef] [PubMed]
  5. S. Sathyendranath and T. Platt, “Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile,” Appl. Opt. 28(3), 490–495 (1989). [CrossRef] [PubMed]
  6. J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13(22), 9052–9061 (2005). [CrossRef] [PubMed]
  7. H. R. Gordon and A. Morel, Remote assessment of ocean color for interpretation of satellite visible imagery: A review (New York: Springer-Verlag 1983) p. 44.
  8. IOCCG, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z.-P. Lee, ed. (IOCCG: Dartmouth, Canada. 2006) p. 126.
  9. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988). [CrossRef]
  10. Z. P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, and A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50(19), 3155–3167 (2011). [CrossRef] [PubMed]
  11. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (2): Bi-directional aspects,” Appl. Opt. 32(33), 6864–6879 (1993). [CrossRef] [PubMed]
  12. C. D. Mobley, Light and Water: radiative transfer in natural waters (New York: Academic Press 1994).
  13. C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karge, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay Florida,” Remote Sens. Environ. 93(3), 423–441 (2004). [CrossRef]
  14. M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89(3), 326–350 (2004). [CrossRef]
  15. F. Mélin, G. Zibordi, and J.-F. Berthon, “Assessment of satellite ocean color products at a coastal site,” Remote Sens. Environ. 110(2), 192–215 (2007). [CrossRef]
  16. S. Shang, Z. Lee, and G. Wei, “ Characterization of MODIS-derived euphotic zone depth: results for the China Sea,” Remote Sens. Environ. 115(1), 180–186 (2011). [CrossRef]
  17. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997). [CrossRef] [PubMed]
  18. H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman, K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural waters,” Opt. Express 17(18), 16192–16208 (2009). [CrossRef] [PubMed]
  19. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43(25), 4957–4964 (2004). [CrossRef] [PubMed]
  20. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999). [CrossRef] [PubMed]
  21. S. Sathyendranath and T. Platt, “Analytic model of ocean color,” Appl. Opt. 36(12), 2620–2629 (1997). [CrossRef] [PubMed]
  22. Z. Lee, V. P. Lance, S. Shang, R. Vaillancourt, S. Freeman, B. Lubac, B. R. Hargreaves, C. Del Castillo, R. Miller, M. Twardowski, and G. Wei, “An assessment of optical properties and primary production derived from remote sensing in the Southern Ocean (SO GasEx),” J. Geophys. Res. 116, C00F03 (2011), doi:. [CrossRef]
  23. C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:. [CrossRef]
  24. J. E. O'Reilly, “SeaWiFS Postlaunch Calibration and Validation Analyses,” Part 3, in SeaWiFS Postlaunch Technical Report Series, S.B. Hooker and E.R. Firestone, Editors. 2000, NASA Goddard Space Flight Center: Greenbelt, MD. p. 58.
  25. F. C. Polcyn, W. L. Brown, and I. J. Sattinger, “The measurement of water depth by remote-sensing techniques,” University of Michigan: Ann Arbor (1970).
  26. D. R. Lyzenga, “Passive remote-sensing techniques for mapping water depth and bottom features,” Appl. Opt. 17(3), 379–383 (1978). [CrossRef] [PubMed]
  27. C. D. Mobley, L. K. Sundman, C. O. Davis, J. H. Bowles, T. V. Downes, R. A. Leathers, M. J. Montes, W. P. Bissett, D. D. R. Kohler, R. P. Reid, E. M. Louchard, and A. Gleason, “Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables,” Appl. Opt. 44(17), 3576–3592 (2005). [CrossRef] [PubMed]
  28. V. E. Brando, J. M. Anstee, M. Wettle, A. G. Dekker, S. R. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113(4), 755–770 (2009). [CrossRef]
  29. S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39(7), 1689–1703 (1994). [CrossRef]
  30. Z. P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “ Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11652 (2001). [CrossRef]
  31. Z. P. Lee, B. Casey, R. A. Arnone, A. D. Weidemann, A. R. Parsons, M. Montes, B. C. Gao, W. A. Goode, C. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1(1), 011502 (2007). [CrossRef]
  32. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  33. P. Bontempi and J. Yoder, “Spatial variability in SeaWiFS imagery of the South Atlantic bight as evidenced by gradients (fronts) in chlorophyll a and water-leaving radiance,” Deep Sea Res., Part II 51(10–11), 1019–1032 (2004).
  34. C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and Spectral Resolution Considerations for Imaging Coastal Waters,” in SPIE Coastal Ocean Remote Sensing. 2007. San Diego, CA.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited