OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography

Jian Fu, Astrid Velroyen, Renbo Tan, Junwei Zhang, Liyuan Chen, Arne Tapfer, Martin Bech, and Franz Pfeiffer  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21512-21519 (2012)
http://dx.doi.org/10.1364/OE.20.021512


View Full Text Article

Enhanced HTML    Acrobat PDF (3195 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

© 2012 OSA

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(110.3175) Imaging systems : Interferometric imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Imaging Systems

History
Original Manuscript: June 13, 2012
Manuscript Accepted: August 12, 2012
Published: September 5, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Jian Fu, Astrid Velroyen, Renbo Tan, Junwei Zhang, Liyuan Chen, Arne Tapfer, Martin Bech, and Franz Pfeiffer, "A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography," Opt. Express 20, 21512-21519 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-19-21512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Fitzgerald, “Phase-sensitive x-ray imaging,” Phys. Today7, 23–26 (2000). [CrossRef]
  2. A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys.44, 6355–6367 (2005). [CrossRef]
  3. F. Pfeiffer, C. David, O. Bunk, T. Donath, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “Region-of-interest tomography for grating-based differential phase-contrast imaging,” Phys. Rev.Lett.101, 168101 (2008). [CrossRef]
  4. C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, and V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x rays,” Appl. Phys. Lett.69, 1826–1828 (1996). [CrossRef]
  5. F. Beckmann, K. Heise, B. Kolsch, U. Bonse, M. Rajewsky, and T. Biermann, “Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography,” Biophys. J.76, 98–102 (1999). [CrossRef]
  6. P. Cloetens, W. Ludwig, J. Baruchel, D. van Dyck, J. van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography:quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett.75, 2912–2914 (1999). [CrossRef]
  7. F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med.Biol.45, 933–946 (2000). [CrossRef]
  8. S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express11, 2289–2302 (2003). [CrossRef]
  9. P. J. McMahon, A. G. Peele, D. Paterson, J. J. A. Lin, T. H. K. Irving, I. McNulty, and K. A. Nugent, “Quantitative x-ray phase tomography with sub-micron resolution,” Opt. Commun.217, 53–58 (2003). [CrossRef]
  10. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys.42, L866–L868 (2003). [CrossRef]
  11. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13, 6296–6304 (2005). [CrossRef]
  12. A. Groso, M. Stampanoni, R. Abela, P. Schneider, S. Linga, and R. Müller, “Phase contrast tomography: an alternative approach,” Appl. Phys. Lett.88, 214104 (2006). [CrossRef]
  13. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45, 5254–5262 (2006). [CrossRef]
  14. A. Bravin, J. Keyrilainen, M. Fernandez, S. Fiedler, C. Nemoz, M. L. Karjalainen-Lindsberg, M. Tenhunen, P. Virkkunen, M. Leidenius, K. V. Smitten, P. Sipila, and P. Suortti, “High-resolution ct by diffraction-enhanced x-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology,” Phys. Med. Biol.52, 2197–2211 (2007). [CrossRef]
  15. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater.7, 134 (2008). [CrossRef]
  16. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98, 108105 (2007). [CrossRef]
  17. M. Bech, T. H. Jensen, R. Feidenhans’l, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol.54, 2747–2753 (2009). [CrossRef]
  18. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys.2, 258–261 (2006). [CrossRef]
  19. P. P. Zhu, K. Zhang, Z. L. Wang, Y. J. Liu, X. S. Liu, Z. Y. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based x-ray phase-contrast imaging,” Proc. Natl Acad. Sci. USA107, 13576–13581 (2010). [CrossRef]
  20. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72, 156–160 (1982). [CrossRef]
  21. I. Jerjen, V. Revol, C. Kottler, T. Luethi, U. Sennhauser, R. Kaufmann, and C. Urban, “Phase contrast cone beam tomography with an x-ray grating interferometer,” AIP Conf. Proc.1236, 227–231 (2010). [CrossRef]
  22. T. G. Zhuang, S. Leng, B. E. Nett, and G. H. Chen, “Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data,” Phys. Med. Biol.49, 5489–5503 (2004). [CrossRef]
  23. F. Noo, R. Clackdoyle, and J. D. Pack, “A two-step Hilbert transform method for 2D image reconstruction,” Phys. Med. Biol.49, 3903–3923 (2004). [CrossRef]
  24. S. Leng, T. G. Zhuang, B. E. Nett, and G. H. Chen, “Exact fan-beam image reconstruction algorithm for truncated projection data acquired from an asymmetric half-size detector,” Phys. Med. Biol.50, 1805–1820 (2005). [CrossRef]
  25. X. Pan, Y. Zou, and D. Xia, “Image reconstruction in peripheral and central regions-of-interest and data redundancy,” Med. Phys.32, 673–684 (2005). [CrossRef]
  26. G. H. Chen and Z. Qi, “Image reconstruction for fan-beam differential phase contrast computed tomography,” Phys. Med. Biol.53, 1015–1025 (2008). [CrossRef]
  27. J. Fu, P. Li, Q. Wang, S. Wang, M. Bech, A. Tapfer, D. Hahn, and F. Pfeiffer, “A reconstruction method for equidistant fan-beam differential phase contrast computed tomography,” Phys. Med. Biol.56, 4259–4238 (2011). [CrossRef]
  28. A. C. Kak and M. Slaney, Principles of Computerized Tomography (IEEE Press, 1987).
  29. A. Tapfer, M. Bech, B. Pauwels, X. Liu, P. Bruyndonckx, A. Sasov, J. Kenntner, J. Mohr, M. Walter, J. Schulz, and F. Pfeiffer, “Development of a prototype gantry system for preclinical x-ray phase-contrast computed tomography,” Med. Phys.38, 5910–5915 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited