OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Quantification of collagen fiber organization using three-dimensional Fourier transform-second-harmonic generation imaging

Tung Yuen Lau, Raghu Ambekar, and Kimani C. Toussaint, Jr.  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21821-21832 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1629 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present three-dimensional Fourier transform-second-harmonic generation (3D FT-SHG) imaging, a generalization of the previously reported two-dimensional FT-SHG, to quantify collagen fiber organization from 3D image stacks of biological tissues. The current implementation calculates 3D preferred orientation of a region of interest, and classifies regions of interest based on orientation anisotropy and average voxel intensity. Presented are some example applications of the technique which reveal the layered structure of collagen fibers in porcine sclera, and estimates the cut angle of porcine tendon tissues. This technique shows promising potential for studying biological tissues that contain fibrillar structures in 3D.

© 2012 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(100.6950) Image processing : Tomographic image processing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Image Processing

Original Manuscript: July 19, 2012
Revised Manuscript: September 3, 2012
Manuscript Accepted: September 4, 2012
Published: September 7, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Tung Yuen Lau, Raghu Ambekar, and Kimani C. Toussaint, "Quantification of collagen fiber organization using three-dimensional Fourier transform-second-harmonic generation imaging," Opt. Express 20, 21821-21832 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ambekar, M. R. Mehta, S. Leithem, and K. C. Toussaint, “Fourier transform-second-harmonic generation imaging of collagen fibers in biological tissues,” in Biomedical Optics (Optical Society of America, 2010), p. BSuD63.
  2. L. Loew, A. Millard, P. J. Campagnola, W. Mohler, and A. Lewis, “Second harmonic imaging microscopy,” Microsc. Microanal. 9, 170–171 (2003).
  3. R. A. Rao, M. R. Mehta, and K. C. Toussaint., “Fourier transform-second-harmonic generation imaging of biological tissues,” Opt. Express 17(17), 14534–14542 (2009). [CrossRef] [PubMed]
  4. M. Sivaguru, S. Durgam, R. Ambekar, D. Luedtke, G. Fried, A. Stewart, and K. C. Toussaint., “Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging,” Opt. Express 18(24), 24983–24993 (2010). [CrossRef] [PubMed]
  5. P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7(2), 205–214 (2002). [CrossRef] [PubMed]
  6. B. Alberts, A. Johnson, L. Julian, R. Martin, R. Keith, and W. Peter, Molecular Biology of the Cell (Garland Science, 2007).
  7. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  8. G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Struct. Biol. 141(1), 53–62 (2003). [CrossRef] [PubMed]
  9. N. Morishige, Y. Takagi, T. Chikama, A. Takahara, and T. Nishida, “Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 52(2), 911–915 (2011). [CrossRef] [PubMed]
  10. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002). [CrossRef] [PubMed]
  11. A. M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70(2), 162–170 (2007). [CrossRef] [PubMed]
  12. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012). [CrossRef] [PubMed]
  13. T. Hompland, A. Erikson, M. Lindgren, T. Lindmo, and C. de Lange Davies, “Second-harmonic generation in collagen as a potential cancer diagnostic parameter,” J. Biomed. Opt. 13(5), 054050 (2008). [CrossRef] [PubMed]
  14. P. J. Campagnola, M. A. Brewer, V. Ajeti, P. Keely, K. Eliceiri, M. Patankar, and K. Tilbury, “SHG imaging of cancer,” in Biomedical Optics(Optical Society of America, 2012), p. BSu4B.1.
  15. T. Abraham and J. Hogg, “Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol. 171(2), 189–196 (2010). [CrossRef] [PubMed]
  16. M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. M. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006). [CrossRef] [PubMed]
  17. T. L. Sun, Y. Liu, M. C. Sung, H. C. Chen, C. H. Yang, V. Hovhannisyan, W. C. Lin, Y. M. Jeng, W. L. Chen, L. L. Chiou, G. T. Huang, K. H. Kim, P. T. C. So, Y. F. Chen, H. S. Lee, and C. Y. Dong, “Ex vivo imaging and quantification of liver fibrosis using second-harmonic generation microscopy,” J. Biomed. Opt. 15(3), 036002–036006 (2010). [CrossRef] [PubMed]
  18. R. Ambekar, M. Chittenden, I. Jasiuk, and K. C. Toussaint., “Quantitative second-harmonic generation microscopy for imaging porcine cortical bone: comparison to SEM and its potential to investigate age-related changes,” Bone 50(3), 643–650 (2012). [CrossRef] [PubMed]
  19. J. Caetano-Lopes, A. M. Nery, H. Canhão, J. Duarte, R. Cascão, A. Rodrigues, I. P. Perpétuo, S. Abdulghani, P. M. Amaral, S. Sakaguchi, Y. T. Konttinen, L. Graça, M. F. Vaz, and J. E. Fonseca, “Chronic arthritis leads to disturbances in the bone collagen network,” Arthritis Res. Ther. 12(1), R9 (2010). [CrossRef] [PubMed]
  20. S. M. Weis, J. L. Emery, K. D. Becker, D. J. McBride, J. H. Omens, and A. D. McCulloch, “Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine (oim),” Circ. Res. 87(8), 663–669 (2000). [CrossRef] [PubMed]
  21. O. Nadiarnykh, R. B. LaComb, M. A. Brewer, and P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy,” BMC Cancer 10(1), 94 (2010). [CrossRef] [PubMed]
  22. C. Thrasivoulou, G. Virich, T. Krenacs, I. Korom, and D. L. Becker, “Optical delineation of human malignant melanoma using second harmonic imaging of collagen,” Biomed. Opt. Express 2(5), 1282–1295 (2011). [CrossRef] [PubMed]
  23. D. Barkan, J. E. Green, and A. F. Chambers, “Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth,” Eur. J. Cancer 46(7), 1181–1188 (2010). [CrossRef] [PubMed]
  24. R. Ambekar, K. C. Toussaint, and A. Wagoner Johnson, “The effect of keratoconus on the structural, mechanical, and optical properties of the cornea,” J. Mech. Behav. Biomed. Mater. 4(3), 223–236 (2011). [CrossRef] [PubMed]
  25. D. F. Holmes, C. J. Gilpin, C. Baldock, U. Ziese, A. J. Koster, and K. E. Kadler, “Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization,” Proc. Natl. Acad. Sci. U.S.A. 98(13), 7307–7312 (2001). [CrossRef] [PubMed]
  26. S. Viguet-Carrin, P. Garnero, and P. D. Delmas, “The role of collagen in bone strength,” Osteoporosis Int. 17(3), 319–336 (2006). [CrossRef] [PubMed]
  27. M. F. Young, “Bone matrix proteins: their function, regulation, and relationship to osteoporosis,” Osteoporosis Int. 14, 35–42 (2003).
  28. K. Brockbank, W. MacLellan, J. Xie, S. Hamm-Alvarez, Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Banking 9, 299–307 (2008).
  29. C. P. Brown, M. A. Houle, M. Chen, A. J. Price, F. Légaré, and H. S. Gill, “Damage initiation and progression in the cartilage surface probed by nonlinear optical microscopy,” J. Mech. Behav. Biomed. Mater. 5(1), 62–70 (2012). [CrossRef] [PubMed]
  30. E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010). [CrossRef] [PubMed]
  31. C. Boote, S. Dennis, Y. Huang, A. J. Quantock, and K. M. Meek, “Lamellar orientation in human cornea in relation to mechanical properties,” J. Struct. Biol. 149(1), 1–6 (2005). [CrossRef] [PubMed]
  32. Y. Komai and T. Ushiki, “The three-dimensional organization of collagen fibrils in the human cornea and sclera,” Invest. Ophthalmol. Visual Sci. 32(8), 2244–2258 (1991). [PubMed]
  33. M. Winkler, D. Chai, S. Kriling, C. J. Nien, D. J. Brown, B. Jester, T. Juhasz, and J. V. Jester, “Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics,” Invest. Ophthalmol. Vis. Sci. 52(12), 8818–8827 (2011). [CrossRef] [PubMed]
  34. T. Abraham, D. Kayra, B. McManus, and A. Scott, “Quantitative assessment of forward and backward second harmonic three dimensional images of collagen type I matrix remodeling in a stimulated cellular environment,” J. Struct. Biol. (2012), http://dx.doi.org/10.1016/j.jsb.2012.05.004. [CrossRef] [PubMed]
  35. J. Wu, S. L. Voytik-Harbin, D. L. Filmer, C. M. Hoffman, B. Yuan, C.-S. Chiang, J. Sturgis, and J. P. Robinson, “Modeling ECM fiber formation: structure information extracted by analysis of 2D and 3D image sets,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX (SPIE, San Jose, CA, USA, 2002), pp. 52–56.
  36. B. Pourdeyhimi and H. S. Kim, “Measuring fiber orientation in nonwovens: the hough transform,” Text. Res. J. 72(9), 803–809 (2002). [CrossRef]
  37. A. A. A. Jaddi, H. S. Kim, and B. Pourdeyhimi, “Measurement of fiber orientation in nonwovens optical Fourier transform,” Inter. Nonwovens J. 10, 10–16 (2001).
  38. B. Josso, D. R. Burton, and M. J. Lalor, “Texture orientation and anisotropy calculation by Fourier transform and principal component analysis,” Mech. Sys. Signal Process. 19(5), 1152–1161 (2005). [CrossRef]
  39. F. Xiao Guang and P. Milanfar, “Multiscale principal components analysis for image local orientation estimation,” In Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Conference on(2002), pp. 478–482 vol.471.
  40. W. Yi and S. Marshall, “Principal component analysis in application to object orientation,” Geo-Spat. Inf. Sci. 3, 76–78 (2000).
  41. S. Mori and P. C. van Zijl, “Fiber tracking: principles and strategies - a technical review,” NMR Biomed. 15(7-8), 468–480 (2002). [CrossRef] [PubMed]
  42. N. Toussaint, M. Sermesant, C. T. Stoeck, S. Kozerke, and P. G. Batchelor, “In vivo human 3D cardiac fibre architecture: reconstruction using curvilinear interpolation of diffusion tensor images,” Med. Image Comput. Comput. Assist Interv. 13(Pt 1), 418–425 (2010). [PubMed]
  43. J. Wu, B. Rajwa, D. L. Filmer, C. M. Hoffmann, B. Yuan, C. S. Chiang, J. Sturgis, and J. P. Robinson, “Analysis of orientations of collagen fibers by novel fiber-tracking software,” Microsc. Microanal. 9(6), 574–580 (2003). [CrossRef] [PubMed]
  44. C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost, “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” J. Anat. 194(1), 79–88 (1999). [CrossRef] [PubMed]
  45. O. Friman, G. Farnebäck, and C. F. Westin, “A Bayesian approach for stochastic white matter tractography,” IEEE Trans. Med. Imaging 25(8), 965–978 (2006). [CrossRef] [PubMed]
  46. C. S. Garbe, A. Buttgereit, S. Schurmann, and O. Friedrich, “Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing,” IEEE Trans. Biomed. Eng. 59, 39–44 (2012).
  47. P. Helm, M. F. Beg, M. I. Miller, and R. L. Winslow, “Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging,” Ann. N. Y. Acad. Sci. 1047(1), 296–307 (2005). [CrossRef] [PubMed]
  48. H. J. Park, M. Kubicki, C. F. Westin, I. F. Talos, A. Brun, S. Peiper, R. Kikinis, F. A. Jolesz, R. W. McCarley, and M. E. Shenton, “Method for combining information from white matter fiber tracking and gray matter parcellation,” AJNR Am. J. Neuroradiol. 25(8), 1318–1324 (2004). [PubMed]
  49. R. Ambekar, T.-Y. Lau, M. Walsh, R. Bhargava, and K. C. Toussaint, “Quantifying collagen structure in breast biopsies using second-harmonic generation imaging,” Biomed. Opt. Express 3(9), 2021–2035 (2012). [CrossRef]
  50. R. A. Rao, M. R. Mehta, S. Leithem, and K. C. Toussaint., “Quantitative analysis of forward and backward second-harmonic images of collagen fibers using Fourier transform second-harmonic-generation microscopy,” Opt. Lett. 34(24), 3779–3781 (2009). [CrossRef] [PubMed]
  51. I. Amat-Roldan, S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast image analysis in polarization SHG microscopy,” Opt. Express 18(16), 17209–17219 (2010). [CrossRef] [PubMed]
  52. W. L. Chen, T. H. Li, P. J. Su, C. K. Chou, P. T. Fwu, S. J. Lin, D. Kim, P. T. C. So, and C. Y. Dong, “Second harmonic generation chi tensor microscopy for tissue imaging,” Appl. Phys. Lett. 94, 3 (2009).
  53. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007). [CrossRef] [PubMed]
  54. P. J. Su, W. L. Chen, T. H. Li, C. K. Chou, T. H. Chen, Y. Y. Ho, C. H. Huang, S. J. Chang, Y. Y. Huang, H. S. Lee, and C. Y. Dong, “The discrimination of type I and type II collagen and the label-free imaging of engineered cartilage tissue,” Biomaterials 31(36), 9415–9421 (2010). [CrossRef] [PubMed]
  55. N. Morishige, N. Yamada, S. Teranishi, T.-i. Chikama, T. Nishida, and A. Takahara, “Detection of subepithelial fibrosis associated with corneal stromal edema by second harmonic generation imaging microscopy,” Invest. Ophthalmol. Vis. Sci. 50(7), 3145–3150 (2009). [CrossRef] [PubMed]
  56. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 (6), 679–698 (1986). [CrossRef] [PubMed]
  57. R. H. Bamberger and M. J. T. Smith, “A filter bank for the directional decomposition of images: theory and design,” IEEE Trans. Signal Process. 40(4), 882–893 (1992). [CrossRef]
  58. A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “Filterbank-based fingerprint matching,” IEEE Trans. Image Process. 9(5), 846–859 (2000). [CrossRef] [PubMed]
  59. D. A. Forsyth and J. Ponce, Computer Vision: A modern approach (Prentice Hall, 2011).
  60. J. Vince, Mathematics for computer graphics (Springer, 2010).
  61. Kitware, “Volview,” http://www.kitware.com/opensource/volview.html .
  62. N. Maffulli, P. Renstrom, and W. B. Leadbetter, Tendon Injuries: Basic Science and Clinical Medicine (Springer, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (228 KB)     
» Media 2: AVI (227 KB)     
» Media 3: AVI (273 KB)     
» Media 4: AVI (290 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited