OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Multiplex Raman induced Kerr effect microscopy

Brandon R. Bachler, Martin E. Fermann, and Jennifer P. Ogilvie  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 835-844 (2012)
http://dx.doi.org/10.1364/OE.20.000835


View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report spectrally-resolved chemical imaging based on Raman induced Kerr effect spectroscopy (RIKES). When used with circularly-polarized pump excitation, multiplex RIKES offers the potential for spectrally-resolved imaging free of the nonresonant background that plagues coherent anti-Stokes Raman scattering. RIKES does however have a highly sample-dependent birefringent background that limits its sensitivity and can introduce spectral distortions. We demonstrate that in low birefringence samples multiplex RIKES microscopy offers an enhanced signal-to-noise ratio compared to multiplex stimulated Raman scattering (SRS) when implemented in a high polarization-purity, low frequency chopping scheme.

© 2012 OSA

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(300.6550) Spectroscopy : Spectroscopy, visible
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Spectroscopy

History
Original Manuscript: October 14, 2011
Revised Manuscript: December 4, 2011
Manuscript Accepted: December 11, 2011
Published: January 3, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Brandon R. Bachler, Martin E. Fermann, and Jennifer P. Ogilvie, "Multiplex Raman induced Kerr effect microscopy," Opt. Express 20, 835-844 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-2-835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1(1), 883–909 (2008). [CrossRef] [PubMed]
  2. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B108(3), 827–840 (2004). [CrossRef]
  3. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999). [CrossRef]
  4. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys.38(5), R59–R81 (2005). [CrossRef]
  5. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011). [CrossRef] [PubMed]
  6. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.29(23), 2701–2703 (2004). [CrossRef] [PubMed]
  7. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.31(4), 480–482 (2006). [CrossRef] [PubMed]
  8. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys B: Lasers Opt.87(3), 389–393 (2007). [CrossRef]
  9. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  10. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009). [CrossRef]
  11. D. Zhang, M. N. Slipchenko, and J. X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett.2(11), 1248–1253 (2011). [CrossRef] [PubMed]
  12. C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011). [CrossRef]
  13. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett.36(13), 2387–2389 (2011). [CrossRef] [PubMed]
  14. H. T. Beier, G. D. Noojin, and B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express19(20), 18885–18892 (2011). [CrossRef] [PubMed]
  15. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express18(13), 13708–13719 (2010). [CrossRef] [PubMed]
  16. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010). [CrossRef] [PubMed]
  17. E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express17(21), 18612–18620 (2009). [CrossRef] [PubMed]
  18. S. Bourquin, R. P. Prasankumar, F. X. Kärtner, J. G. Fujimoto, T. Lasser, and R. P. Salathé, “High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array,” Opt. Lett.28(17), 1588–1590 (2003). [CrossRef] [PubMed]
  19. L. N. Guo, Z. L. Tang, and D. Xing, “Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy,” Sci. China, Ser. G51(7), 788–796 (2008). [CrossRef]
  20. C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy,” J. Phys. Chem. B115(18), 5574–5581 (2011). [CrossRef] [PubMed]
  21. S. Shim and R. A. Mathies, “Femtosecond Raman-induced Kerr effect spectroscopy,” J. Raman Spectrosc.39(11), 1526–1530 (2008). [CrossRef]
  22. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007). [CrossRef] [PubMed]
  23. D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc.57(11), 1317–1323 (2003). [CrossRef] [PubMed]
  24. D. Heiman, R. W. Hellwarth, M. D. Levenson, and G. Martin, “Raman-induced Kerr Effect,” Phys. Rev. Lett.36(4), 189–192 (1976). [CrossRef]
  25. G. L. Eesley, Coherent Raman Spectroscopy (Elsevier, 1981), p. 150.
  26. R. W. Boyd, Nonlinear Optics (Academic Press, 1992), p. 439.
  27. G. L. Eesley, “Coherent Raman spectroscopy,” J. Quant. Spectrosc. Radiat. Transf.22(6), 507–576 (1979). [CrossRef]
  28. M. D. Levenson and J. J. Song, “Raman-induced Kerr effect with elliptical polarization,” J. Opt. Soc. Am.66(7), 641–643 (1976). [CrossRef]
  29. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express16(24), 19629–19642 (2008). [CrossRef] [PubMed]
  30. P. J. Hendra and J. K. Agbenyega, The Raman Spectra of Polymers (John Wiley and Sons, 1993).
  31. I. H. Shin, J. Y. Lee, S. Lee, D. J. Lee, and D. Y. Kim, “Measurement of relative phase distribution of onion epidermal cells by using the polarization microscope - art. no. 644317,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds. (2007), pp. 44317–44317.
  32. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.26(17), 1341–1343 (2001). [CrossRef] [PubMed]
  33. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507 (2002). [CrossRef]
  34. M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-Stokes Raman scattering,” Opt. Express14(18), 8448–8458 (2006). [CrossRef] [PubMed]
  35. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006). [CrossRef] [PubMed]
  36. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002). [CrossRef] [PubMed]
  37. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express14(8), 3622–3630 (2006). [CrossRef] [PubMed]
  38. Y. X. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009). [CrossRef] [PubMed]
  39. M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne-detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. (Berl.)19(1), 1–17 (1979). [CrossRef]
  40. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B: Lasers Opt.77(2-3), 269–277 (2003). [CrossRef]
  41. M. Cui, J. Skodack, and J. P. Ogilvie, “Chemical imaging with Fourier transform coherent anti-Stokes Raman scattering microscopy,” Appl. Opt.47(31), 5790–5798 (2008). [CrossRef] [PubMed]
  42. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express15(23), 15207–15213 (2007). [CrossRef] [PubMed]
  43. G. Giraud, C. M. Gordon, I. R. Dunkin, and K. Wynne, “The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study,” J. Chem. Phys.119(1), 464–477 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited