OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery

B.J. Chen, L.F. Shen, E.Y.B. Pun, and H. Lin  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 879-889 (2012)
http://dx.doi.org/10.1364/OE.20.000879


View Full Text Article

Enhanced HTML    Acrobat PDF (2478 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In Sm3+-doped K+–Na+ ion-exchanged aluminum germanate (NMAG) glass channel waveguide, a clear and compact red amplified spontaneous emission (ASE) trace is observed under the excitation of a 488nm Ar+ laser. 78% photons of ASE fluorescence in visible region are demonstrated to be located in 600−730nm wavelength range. High-directivity and high-brightness ASE fluorescence of Sm3+-doped NMAG glass channel waveguide, which matches the excitation band of most photosensitizers (PS) currently used in photodynamic therapy (PDT) or clinical trials, has promising potential application as an excitation light source for PDT treatment.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.7380) Optical devices : Waveguides, channeled
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 28, 2011
Revised Manuscript: December 3, 2011
Manuscript Accepted: December 6, 2011
Published: January 3, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
B.J. Chen, L.F. Shen, E.Y.B. Pun, and H. Lin, "Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery," Opt. Express 20, 879-889 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-2-879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011). [CrossRef] [PubMed]
  2. S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics2(7), 394–395 (2008). [CrossRef]
  3. S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004). [CrossRef] [PubMed]
  4. K. Uk, D. A. Makarov, L. S. Yup, B. S. Jin, and G. V. Papayan, “Illuminator for photodynamic therapy and fluorescence diagnosis with lightguide output of the radiation,” J. Opt. Technol.75(12), 772–777 (2008). [CrossRef]
  5. L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002). [CrossRef] [PubMed]
  6. K. Maheshvaran, K. Linganna, and K. Marimuthu, “Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses,” J. Lumin.131(12), 2746–2753 (2011). [CrossRef]
  7. Z. Yang, G. Tang, L. Luo, and W. Chen, “Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses,” Appl. Phys. Lett.89(13), 131117 (2006). [CrossRef]
  8. T. Hayakawa, H. Ooishi, and M. Nogami, “Optical bistability of stimulated-emission lines in Sm(3+)-doped glass microspheres,” Opt. Lett.26(2), 84–86 (2001). [CrossRef] [PubMed]
  9. G. Lakshminarayana and J. Qiu, “Photoluminescence of Pr3+, Sm3+ and Dy3+-doped SiO2–Al2O3–BaF2–GdF3 glasses,” J. Alloy. Comp.476(1-2), 470–476 (2009). [CrossRef]
  10. K. S. V. Sudhakar, M. S. Reddy, L. S. Rao, and N. Veeraiah, “Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system,” J. Lumin.128(11), 1791–1798 (2008). [CrossRef]
  11. Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010). [CrossRef]
  12. G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys.42(1), 015414 (2009). [CrossRef]
  13. Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, and V. Joshi, “Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses,” Mater. Sci. Eng. B119(2), 131–135 (2005). [CrossRef]
  14. B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin.129(4), 363–369 (2009). [CrossRef]
  15. G. Kawamura, T. Hayakawa, and M. Nogami, “Effect of counter ions on the reduction process of Sm3+ ions in TiO2–ZrO2–Al2O3–SiO2 glasses,” J. Alloy. Comp.408–412, 845–847 (2006). [CrossRef]
  16. G. Manojkumar, B. Shivakiranbhaktha, and D. Narayanarao, “Self-quenching of spontaneous emission in Sm3+ doped lead-borate glass,” Opt. Mater.28(11), 1266–1270 (2006). [CrossRef]
  17. T. Som and B. Karmakar, “Infrared-to-red upconversion luminescence in samarium-doped antimony glasses,” J. Lumin.128(12), 1989–1996 (2008). [CrossRef]
  18. S. Rada, P. Pascuta, M. Rada, and E. Culea, “Effects of samarium (III) oxide content on structural investigations of the samarium–vanadate–tellurate glasses and glass ceramics,” J. Non-Cryst. Solids357(19-20), 3405–3409 (2011). [CrossRef]
  19. S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin.131(11), 2255–2262 (2011). [CrossRef]
  20. G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett.99(12), 121105 (2011). [CrossRef]
  21. R. Praveena, V. Venkatramu, P. Babu, and C. K. Jayasankar, “Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO– Nb2O5 glasses,” Physica B403(19-20), 3527–3534 (2008). [CrossRef]
  22. A. Kumar, D. K. Rai, and S. B. Rai, “Optical properties of Sm3+ ions doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.59(5), 917–925 (2003). [CrossRef] [PubMed]
  23. L. H. Huang, A. Jha, and S. X. Shen, “Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560−660 nm),” Opt. Commun.281(17), 4370–4373 (2008). [CrossRef]
  24. J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci.13(8), 1548–1553 (2011). [CrossRef]
  25. Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A112(5), 803–807 (2008). [CrossRef] [PubMed]
  26. C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc.94(2), 543–550 (2011). [CrossRef]
  27. H. Liang and F. Xie, “Optical investigation of Sm(III)-β-diketonate complexes with different neutral ligands,” Spectrochim. Acta A Mol. Biomol. Spectrosc.73(2), 309–312 (2009). [CrossRef] [PubMed]
  28. X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett.91(9), 091104 (2007). [CrossRef]
  29. H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp.488(2), 612–614 (2009). [CrossRef]
  30. D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B26(2), 357–363 (2009). [CrossRef]
  31. K. S. Chiang, Q. Liu, and K. P. Lor, “Refractive-index profiling of buried planar waveguides by an inverse Wentzel– Kramer–Brillouin Method,” J. Lightwave Technol.26(11), 1367–1373 (2008). [CrossRef]
  32. T. T. Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express16(19), 15198–15205 (2008). [CrossRef] [PubMed]
  33. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  34. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  35. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys.49(10), 4424–4442 (1968). [CrossRef]
  36. M. Seshadri, K. V. Rao, J. L. Rao, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Sm3+ doped different phosphate glasses,” J. Alloy. Comp.476(1-2), 263–270 (2009). [CrossRef]
  37. K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.56(1), 103–109 (2000). [CrossRef] [PubMed]
  38. A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, “Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses,” Opt. Mater.32(2), 339–344 (2009). [CrossRef]
  39. M. Jayasimhadri, L. R. Moorthy, S. A. Saleem, and R. V. S. S. N. Ravikumar, “Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.64(4), 939–944 (2006). [CrossRef] [PubMed]
  40. R. Reisfeld and C. K. Jorgensen, in Handbook on the Physics and Chemistry of Rare Earths, A. Gschneidner, Jr. and L. Eyring, eds. (Elsevier Science Publishers B. V., Netherlands, 1987), Vol. 9, pp. 44.
  41. R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater.28(11), 1253–1257 (2006). [CrossRef]
  42. M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys.41(17), 175101 (2008). [CrossRef]
  43. T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater.31(8), 1167–1172 (2009). [CrossRef]
  44. V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater.29(11), 1429–1439 (2007). [CrossRef]
  45. P. Srivastava, S. B. Rai, and D. K. Rai, “Optical properties of Sm3+ doped calibo glass with addition of lead oxide,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(3), 637–642 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited