OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Simultaneous retrieval of fluidic refractive index and surface adsorbed molecular film thickness using silicon wire waveguide biosensors

Yuki Atsumi, Dan-Xia Xu, André Delâge, Jens H. Schmid, Martin Vachon, Pavel Cheben, Siegfried Janz, Nobuhiko Nishiyama, and Shigehisa Arai  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26969-26977 (2012)
http://dx.doi.org/10.1364/OE.20.026969


View Full Text Article

Enhanced HTML    Acrobat PDF (2116 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For silicon wire based ring resonator biosensors, we investigate the simultaneous retrieval of changes in the fluidic refractive index ∆nc and surface adsorbed molecular film thickness ∆dF. This can be achieved by monitoring the resonance shifts of the sensors operating in the TE and TM polarizations at the same time. Although this procedure is straightforward in principle, significant retrieval errors can be introduced due to deviations in the sensor waveguide cross-sections from their nominal values in the range commonly encountered for silicon photonic wire devices. We propose a method of determining the fabricated waveguide size using the group indices derived from measured free spectral range (FSR) of the resonators. We further demonstrate that using experimentally measured group index values, the waveguide size can be determined to accuracies of ± 2 nm in width and ± 1 nm in height. By using this procedure, ∆nc and ∆dF can be obtained to a precision of within 10% of the true values using optically measurable parameters, improving the retrieval accuracy by more than 3 times.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: September 18, 2012
Revised Manuscript: November 6, 2012
Manuscript Accepted: November 6, 2012
Published: November 15, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Yuki Atsumi, Dan-Xia Xu, André Delâge, Jens H. Schmid, Martin Vachon, Pavel Cheben, Siegfried Janz, Nobuhiko Nishiyama, and Shigehisa Arai, "Simultaneous retrieval of fluidic refractive index and surface adsorbed molecular film thickness using silicon wire waveguide biosensors," Opt. Express 20, 26969-26977 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-24-26969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt.27(6), 1160–1163 (1988). [CrossRef] [PubMed]
  3. W. Lukosz, “Priciples and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron.6(3), 215–225 (1991). [CrossRef]
  4. J. Escorihucla, M. J. Banuls, J. G. Castello, V. Toccafondo, J. G. Ruperez, R. Puchades, and A. Maquicira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” in Analytical and Bioanalytical Chemistry, L. M. Lecuga ed. (Springer, 2012)
  5. S. Janz, A. Densmore, D.-X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki, G. Lopinski, A. Delâge, and R. Mckinnon, “Silicon photonic wire waveguide sensors,” in Advanced Photonic Structures for Biological and Chemical Detection, F. Xudong, ed. (Springer, 2009).
  6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010). [CrossRef]
  7. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012). [CrossRef]
  8. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008). [CrossRef] [PubMed]
  9. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett.34(23), 3598–3600 (2009). [CrossRef] [PubMed]
  10. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010). [CrossRef] [PubMed]
  11. A. Densmore, D.-X. Xu, N. A. Sabourin, H. Mcintosh, P. Cheben, J. H. Schmid, R. Ma, M. Vachon, A. Delâge, W. Sinclair, J. Lapointe, Y. Li, G. Lopinski, B. Lamontagne, and S. Janz, “A fully integrated silicon photonic wire sensor array chip and reader instrument,” in Proceedings of IEEE Conference on Group IV Photonics (The Royal Society, London, 2011), pp. 350–352.
  12. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989). [CrossRef]
  13. D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem.121(1), 158–177 (2007). [CrossRef]
  14. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010). [CrossRef]
  15. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J.3(3), 567–579 (2011). [CrossRef]
  16. D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” Proc. SPIE8266, 82660G, 82660G-9 (2012). [CrossRef]
  17. A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-dependent model of a ring resonator sensor excited by a directional coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited