OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects

Andrey G. Nikitin, Andrei V. Kabashin, and Hervé Dallaporta  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27941-27952 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1784 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the excitation of plasmonic resonances in arrays of periodically arranged gold nanoparticles placed in a uniform refractive index environment. Under a proper periodicity of the nanoparticle lattice, such nanoantenna arrays are known to exhibit narrow resonances with asymmetric Fano-type spectral line shape in transmission and reflection spectra having much better resonance quality compared to the single nanoparticle case. Using numerical simulations, we first identify two distinct regimes of lattice response, associated with two-characteristic states of the spectra: Rayleigh anomaly and lattice plasmon mode. The evolution of the electric field pattern is rigorously studied for these two states revealing different configurations of optical forces: the first regime is characterized by the concentration of electric field between the nanoparticles, yielding to almost complete transparency of the array, whereas the second regime is characterized by the concentration of electric field on the nanoparticles and a strong plasmon-related absorption/scattering. We present electric field distributions for different spectral positions of Rayleigh anomaly with respect to the single nanoparticle resonance and optimize lattice parameters in order to maximize the enhancement of electric field on the nanoparticles. Finally, by employing collective plasmon excitations, we explore possibilities for electric field enhancement in the region between the nanoparticles. The presented results are of importance for the field enhanced spectroscopy as well as for plasmonic bio and chemical sensing.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(290.5850) Scattering : Scattering, particles
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Optics at Surfaces

Original Manuscript: September 18, 2012
Revised Manuscript: October 29, 2012
Manuscript Accepted: November 5, 2012
Published: November 30, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Andrey G. Nikitin, Andrei V. Kabashin, and Hervé Dallaporta, "Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects," Opt. Express 20, 27941-27952 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  3. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, 2006).
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  5. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and super lensing,” Nat. Photonics3(7), 388–394 (2009). [CrossRef]
  6. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
  7. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  8. V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010). [CrossRef] [PubMed]
  9. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance-how it all started,” Biosens. Bioelectron.10(8), i–ix (1995). [CrossRef] [PubMed]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  12. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4(21), 396–402 (1902). [CrossRef]
  13. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond.A79, 399 (1907).
  14. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's Waves),” J. Opt. Soc. Am.31(3), 213 (1941). [CrossRef]
  15. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt.4(10), 1275 (1965). [CrossRef]
  16. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  17. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  18. D. Maystre, in Electromagnetic Surface Modes edited by A. D. Boardman (Wiley, 1982), chap.17.
  19. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  20. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000). [CrossRef]
  21. N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express11(5), 482–490 (2003). [CrossRef] [PubMed]
  22. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67(8), 085415 (2003). [CrossRef]
  23. M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News38(3), 27–31 (2007). [CrossRef]
  24. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]
  25. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004). [CrossRef]
  26. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007). [CrossRef]
  27. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one dimensional periodic arrays of nanospheres,” J. Phys. B.: Mol. Opt.38(7), L115–L121 (2005). [CrossRef]
  28. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004). [CrossRef] [PubMed]
  29. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004). [CrossRef] [PubMed]
  30. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1–3), 62–67 (2005). [CrossRef]
  31. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008). [CrossRef] [PubMed]
  32. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008). [CrossRef] [PubMed]
  33. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008). [CrossRef]
  34. G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009). [CrossRef]
  35. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the Fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009). [CrossRef] [PubMed]
  36. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010). [CrossRef] [PubMed]
  37. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105(26), 266801 (2010). [CrossRef] [PubMed]
  38. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011). [CrossRef] [PubMed]
  39. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011). [CrossRef] [PubMed]
  40. E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223{230 (2009).
  41. E. Simsek, “Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media,” Opt. Express18(2), 1722–1733 (2010). [CrossRef] [PubMed]
  42. B. Auguié, X. Bendaña, W. Barnes, and F. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010). [CrossRef]
  43. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B85(24), 245411 (2012). [CrossRef]
  44. W. Hu and Sh. Zou, “Remarkable radiation efficiency through leakage modes in two-dimensional silver nanoparticle arrays,” J. Phys. Chem. C115(35), 17328–17333 (2011). [CrossRef]
  45. “FDTD method for periodic structures,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), Chap. 6.
  46. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  47. A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite Difference Time-Domain Method,” (Artech House Publishers, 2005), Chap. 8.
  48. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).
  49. M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res.17(8), 271–277 (1984). [CrossRef]
  50. P. K. Aravind and H. Metiu, “The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission,” Chem. Phys. Lett.74(2), 301–305 (1980). [CrossRef]
  51. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  52. A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical sensors,” Opt. Commun.150(1-6), 5–8 (1998). [CrossRef]
  53. A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrat,” Sens. Actuators B Chem.54(1-2), 51–56 (1999). [CrossRef]
  54. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett.75(25), 3917–3919 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited