OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Fluorescence lifetime imaging with pulsed diode laser enabled stimulated emission

Jianhong Ge, Cuifang Kuang, Shin-Shian Lee, and Fu-Jen Kao  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28216-28221 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1099 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present here a stimulated emission based fluorescence lifetime imaging (FLIM) scheme using a pair of synchronized diode lasers operating at gain switched pulse mode. The two semiconductor lasers, with wavelengths at 635 nm and 700 nm, serve as the excitation and the stimulation light sources for the ATTO647N labeled sample, respectively. FLIM is readily achieved with their relative time delay controlled electronically. The coherent nature of the stimulated emission signal also allows FLIM at long working distance. In this way, a high performance all-semiconductor FLIM module is realized in a flexible, compact, and cost effective configuration.

© 2012 OSA

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(260.2510) Physical optics : Fluorescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 20, 2012
Revised Manuscript: November 11, 2012
Manuscript Accepted: November 20, 2012
Published: December 5, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Jianhong Ge, Cuifang Kuang, Shin-Shian Lee, and Fu-Jen Kao, "Fluorescence lifetime imaging with pulsed diode laser enabled stimulated emission," Opt. Express 20, 28216-28221 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J.69(6), 2234–2242 (1995). [CrossRef] [PubMed]
  2. R. Sanders, H. C. Gerritsen, A. Draaijer, P. M. Houpt, and Y. K. Levine, “Fluorescence lifetime imaging of free calcium in single cells,” Bioimaging2(3), 131–138 (1994). [CrossRef]
  3. H. Gerritsen, R. Sanders, A. Draaijer, C. Ince, and Y. Levine, “Fluorescence lifetime imaging of oxygen in living cells,” J. Fluoresc.7(1), 11–15 (1997). [CrossRef]
  4. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech.63(1), 58–66 (2004). [CrossRef] [PubMed]
  5. S. Tyagi, “Imaging intracellular RNA distribution and dynamics in living cells,” Nat. Methods6(5), 331–338 (2009). [CrossRef] [PubMed]
  6. R. J. Errington, S. M. Ameer-Beg, B. Vojnovic, L. H. Patterson, M. Zloh, and P. J. Smith, “Advanced microscopy solutions for monitoring the kinetics and dynamics of drug-DNA targeting in living cells,” Adv. Drug Deliv. Rev.57(1), 153–167 (2005). [CrossRef] [PubMed]
  7. H.-J. Lin, P. Herman, and J. R. Lakowicz, “Fluorescence lifetime-resolved pH imaging of living cells,” Cytometry AA52(2), 77–89 (2003). [CrossRef] [PubMed]
  8. H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J.94(8), L67–L69 (2008). [CrossRef] [PubMed]
  9. J. W. Borst, M. A. Hink, A. Hoek, and A. J. W. G. Visser, “Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins,” J. Fluoresc.15(2), 153–160 (2005). [CrossRef] [PubMed]
  10. H. Szmacinski and J. R. Lakowicz, “Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry,” Anal. Chem.65(13), 1668–1674 (1993). [CrossRef] [PubMed]
  11. V. V. Ghukasyan and F.-J. Kao, “Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide,” J. Phys. Chem. C113(27), 11532–11540 (2009). [CrossRef]
  12. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A.89(4), 1271–1275 (1992). [CrossRef] [PubMed]
  13. D. Li, W. Zheng, and J. Y. Qu, “Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence,” Opt. Lett.33(20), 2365–2367 (2008). [CrossRef] [PubMed]
  14. R. Sanders, A. Draaijer, H. C. Gerritsen, P. M. Houpt, and Y. K. Levine, “Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy,” Anal. Biochem.227(2), 302–308 (1995). [CrossRef] [PubMed]
  15. T. Oida, Y. Sako, and A. Kusumi, “Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells,” Biophys. J.64(3), 676–685 (1993). [CrossRef] [PubMed]
  16. G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc.117(2), 219–232 (1979). [CrossRef]
  17. J. B. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Appl. Opt.36(1), 397–401 (1997). [CrossRef] [PubMed]
  18. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009). [CrossRef] [PubMed]
  19. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  20. C. E. Hamilton, J. L. Kinsey, and R. W. Field, “Stimulated emission pumping: new methods in spectroscopy and molecular dynamics,” Annu. Rev. Phys. Chem.37(1), 493–524 (1986). [CrossRef]
  21. M. R. Foreman, T. Dellwig, and F.-J. Kao, “Coherent long-distance signal detection using stimulated emission: a feasibility study,” Chin. Phys. J.48, 873–884 (2010).
  22. T. Dellwig, P.-Y. Lin, and F.-J. Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt.17(1), 011009 (2012). [CrossRef] [PubMed]
  23. P.-Y. Lin, S.-S. Lee, C.-S. Chang, and F.-J. Kao, “Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay,” Opt. Express20(10), 11445–11450 (2012). [CrossRef] [PubMed]
  24. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010). [CrossRef]
  25. B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, “Resolving sonoluminescence pulse width with time-correlated single photon counting,” Phys. Rev. Lett.79(7), 1405–1408 (1997). [CrossRef]
  26. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B15(1), 6–15 (1998). [CrossRef]
  27. J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express19(4), 3130–3143 (2011). [CrossRef] [PubMed]
  28. K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010). [CrossRef] [PubMed]
  29. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011). [CrossRef] [PubMed]
  30. E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited