OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Acousto-optically generated potential energy landscapes: Potential mapping using colloids under flow

Michael P. N. Juniper, Rut Besseling, Dirk G. A. L. Aarts, and Roel P. A. Dullens  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28707-28716 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1533 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.7010) Lasers and laser optics : Laser trapping
(350.4990) Other areas of optics : Particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 23, 2012
Revised Manuscript: November 23, 2012
Manuscript Accepted: November 26, 2012
Published: December 10, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Michael P. N. Juniper, Rut Besseling, Dirk G. A. L. Aarts, and Roel P. A. Dullens, "Acousto-optically generated potential energy landscapes: Potential mapping using colloids under flow," Opt. Express 20, 28707-28716 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000). [CrossRef] [PubMed]
  2. K. E. Kürten and C. Krattenthaler, “Multistability and multi 2π-kinks in the Frenkel-Kontorova model: an application to arrays of Josephson Junctions,” Int. J. Mod. Phys. B21, 2324–2334 (2007). [CrossRef]
  3. V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46. [CrossRef]
  4. B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001). [CrossRef]
  5. D. J. Harris, J. C. Conrad, and J. A. Lewis, “Evaporative lithographic patterning of binary colloidal films,” Phil. Trans. R. Soc. A367, 5157–5165 (2009). [CrossRef] [PubMed]
  6. G. Zhang and D. Wang, “Colloidal Lithography - The Art of Nanochemical Patterning,” Chem. Asian J.4, 236–245 (2009). [CrossRef]
  7. A. J. O’Reilly, C. Francis, and N. J. Quitoriano, “Gold nanoparticle deposition on Si by destabilising gold colloid with HF,” J. Colloid Interf. Sci.370, 46–50 (2012). [CrossRef]
  8. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970). [CrossRef]
  9. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett.89, 128301 (2002). [CrossRef] [PubMed]
  10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426, 421–424 (2003). [CrossRef] [PubMed]
  11. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optical generated potential energy landscapes,” Opt. Lett.32, 1144–1146 (2007). [CrossRef] [PubMed]
  12. K. Xiao and D.G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82, 051407 (2010). [CrossRef]
  13. C. Bechinger, M. Brunner, and P. Leiderer, “Phase Behavior of Two-Dimensional Colloidal Systems in the Presence of Periodic Light Fields,” Phys. Rev. Lett.86, 930–934 (2001). [CrossRef] [PubMed]
  14. D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, “Stochastic resonance in colloidal systems,” Europhys. Lett.67, 158–164 (2004). [CrossRef]
  15. C. Schmitt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett.74, 937–943 (2006). [CrossRef]
  16. R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012). [CrossRef]
  17. A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012). [CrossRef] [PubMed]
  18. T. Bohlein, J. Mikhael, and C. Bechinger, “Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces,” Nat. Materials11, 126–130 (2012). [CrossRef]
  19. T. Bohlein and C. Bechinger, “Experimental observation of directional locking and dynamical ordering of colloidal monolayers driven across quasiperiodic substrates,” Phys. Rev. Lett.109, 058301 (2012). [CrossRef] [PubMed]
  20. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787 (2004). [CrossRef]
  21. J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, “Three-body interactions in colloidal systems,” Phys. Rev. E69, 031402 (2004). [CrossRef]
  22. A. C. Richardson, S. N. S. Reihani, and L. B. Oddershede, “Non-harmonic potential of a single beam optical trap,” Opt. Express16, 15709–15717 (2008). [CrossRef] [PubMed]
  23. T. Godazgar, R. Shokri, and S. N. Reihani, “Potential mapping of optical tweezers,” Optics Letters36, 3284–3286 (2011). [CrossRef] [PubMed]
  24. M. Jahnel, M. Behrndt, A. Jannasch, E. Schäffer, and S. W. Grill, “Measuring the complete force field of an optical trap,” Opt. Lett.36, 1260–1262 (2011). [CrossRef] [PubMed]
  25. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007). [CrossRef]
  26. M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012). [CrossRef]
  27. A. V. Arzola, K. Volke-Sepulveda, and J. L. Mateos, “Force mapping of an extended light pattern in an inclined plane: Deterministic regime,” Opt. Express17, 3429–3440 (2009). [CrossRef] [PubMed]
  28. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E70, 010901 (2004). [CrossRef]
  29. M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–1205 (2011). [CrossRef] [PubMed]
  30. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1983).
  31. A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011). [CrossRef]
  32. T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett.81, 1738–1741 (1998). [CrossRef]
  33. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009). [CrossRef]
  34. Aresis d.o.o., Aresis beam steering controller and Tweez software (2007).
  35. J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci.179, 298–310 (1996). [CrossRef]
  36. E. Weeks, Particle tracking using IDL, http://www.physics.emory.edu/weeks/idl/ .
  37. A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory,” Phys. Rev. Lett.95, 168102 (2005). [CrossRef] [PubMed]
  38. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124, 529–541 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited