OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Autofocusing system based on optical astigmatism analysis of single-molecule images

Wonseok Hwang, Sangsu Bae, and Sungchul Hohng  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29353-29360 (2012)
http://dx.doi.org/10.1364/OE.20.029353


View Full Text Article

Acrobat PDF (1450 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-molecule fluorescence imaging has greatly contributed to our understanding of many bio-molecular systems. While reactions occurring in the range of several minutes can be readily studied using conventional single-molecule fluorescence microscopes, data acquisition for longer time scales is hindered by the focal drift of high numerical aperture objectives, which should be corrected in real time. Here, we developed a robust autofocusing system based on optical astigmatism analysis of single-molecule images. Compared to the previously developed methods, our approach has a merit of simplicity in that neither fiducial makers nor an additional laser-detector system is required. As a demonstration, we observed B-Z transition dynamics occurring for several hours.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: October 24, 2012
Revised Manuscript: November 29, 2012
Manuscript Accepted: December 2, 2012
Published: December 18, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Wonseok Hwang, Sangsu Bae, and Sungchul Hohng, "Autofocusing system based on optical astigmatism analysis of single-molecule images," Opt. Express 20, 29353-29360 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-28-29353


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008). [CrossRef] [PubMed]
  2. B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18(1), 16–26 (2008). [CrossRef] [PubMed]
  3. J. Hohlbein, K. Gryte, M. Heilemann, and A. N. Kapanidis, “Surfing on a new wave of single-molecule fluorescence methods,” Phys. Biol. 7(3), 031001 (2010). [CrossRef] [PubMed]
  4. D. Klostermeier, “Single-molecule FRET reveals nucleotide-driven conformational changes in molecular machines and their link to RNA unwinding and DNA supercoiling,” Biochem. Soc. Trans. 39(2), 611–616 (2011). [CrossRef] [PubMed]
  5. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008). [CrossRef] [PubMed]
  6. M. J. Mlodzianoski, J. M. Schreiner, S. P. Callahan, K. Smolková, A. Dlasková, J. Santorová, P. Ježek, and J. Bewersdorf, “Sample drift correction in 3D fluorescence photoactivation localization microscopy,” Opt. Express 19(16), 15009–15019 (2011). [CrossRef] [PubMed]
  7. S. H. Lee, M. Baday, M. Tjioe, P. D. Simonson, R. Zhang, E. Cai, and P. R. Selvin, “Using fixed fiduciary markers for stage drift correction,” Opt. Express 20(11), 12177–12183 (2012). [CrossRef] [PubMed]
  8. M. P. Elenko, J. W. Szostak, and A. M. van Oijen, “Single-molecule binding experiments on long time scales,” Rev. Sci. Instrum. 81(8), 083705 (2010). [CrossRef] [PubMed]
  9. A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010). [CrossRef] [PubMed]
  10. J. Peters, “Nikon Instruments TiE-PFS Dynamic Focusing System,” Nat. Methods | Application Notes (2008).
  11. S. Lee, J. Lee, and S. Hohng, “Single-molecule three-color FRET with both negligible spectral overlap and long observation time,” PLoS ONE 5(8), e12270 (2010). [CrossRef] [PubMed]
  12. J. Lee, S. Lee, K. Ragunathan, C. Joo, T. Ha, and S. Hohng, “Single-molecule four-color FRET,” Angew. Chem. Int. Ed. Engl. 49(51), 9922–9925 (2010). [CrossRef] [PubMed]
  13. W. Hwang, V. Arluison, and S. Hohng, “Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing,” Nucleic Acids Res. 39(12), 5131–5139 (2011). [CrossRef] [PubMed]
  14. D. K. Cohen, W. H. Gee, M. Ludeke, and J. Lewkowicz, “Automatic focus control: the astigmatic lens approach,” Appl. Opt. 23(4), 565–570 (1984). [CrossRef] [PubMed]
  15. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  16. R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods 5(6), 507–516 (2008). [CrossRef] [PubMed]
  17. J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976). [CrossRef] [PubMed]
  18. Y. Sun, S. Duthaler, and B. J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microsc. Res. Tech. 65(3), 139–149 (2004). [CrossRef] [PubMed]
  19. S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins, “Simple and robust image-based autofocusing for digital microscopy,” Opt. Express 16(12), 8670–8677 (2008). [CrossRef] [PubMed]
  20. A. Rich, “DNA comes in many forms,” Gene 135(1-2), 99–109 (1993). [CrossRef] [PubMed]
  21. J. Choi and T. Majima, “Conformational changes of non-B DNA,” Chem. Soc. Rev. 40(12), 5893–5909 (2011). [CrossRef] [PubMed]
  22. S. Bae, H. Son, Y.-G. Kim, and S. Hohng, “Z-DNA is stabilized by the Hofmeister effect of salts,” (manuscript in preparation).
  23. J. E. Bronson, J. Fei, J. M. Hofman, R. L. Gonzalez, and C. H. Wiggins, “Learning Rates and States from Biophysical Time Series: A Bayesian approach to model selection and single-molecule FRET data,” Biophys. J. 97(12), 3196–3205 (2009). [CrossRef] [PubMed]
  24. S. A. McKinney, C. Joo, and T. Ha, “Analysis of single-molecule FRET trajectories using hidden markov modeling,” Biophys. J. 91(5), 1941–1951 (2006). [CrossRef] [PubMed]
  25. S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87(2), 1328–1337 (2004). [CrossRef] [PubMed]
  26. V. DeRocco, T. Anderson, J. Piehler, D. A. Erie, and K. Weninger, “Four-color single-molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes,” Biotechniques 49(5), 807–816 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited