OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator

Woosung Kim, Sahin Kaya Ozdemir, Jiangang Zhu, Faraz Monifi, Cevayir Coban, and Lan Yang  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29426-29446 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2457 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We, for the first time, report the detection and the size measurement of single nanoparticles (i.e. polystyrene) in aquatic environment using mode splitting in a whispering gallery mode (WGM) optical resonator, namely a microtoroid resonator. Using this method we achieved detecting and measuring individual synthetic hemozoin nanocrystals―a hemoglobin degradation by-product of malarial parasites―dispersed in a solution or in air. The results of size measurement in solution and in air agree with each other and with those obtained using scanning electron microscope and dynamic light scattering. Moreover, we compare the sensing capabilities of the degenerate (single resonance) and non-degenerate (split mode, doublet) operation regimes of the WGM resonator.

© 2012 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:

Original Manuscript: August 24, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 11, 2012
Published: December 19, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Woosung Kim, Sahin Kaya Ozdemir, Jiangang Zhu, Faraz Monifi, Cevayir Coban, and Lan Yang, "Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator," Opt. Express 20, 29426-29446 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol.2(2), 114–120 (2007). [CrossRef] [PubMed]
  2. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002). [CrossRef]
  4. P. F. Scholl, D. Kongkasuriyachai, P. A. Demirev, A. B. Feldman, J. S. Lin, D. J. Sullivan, and N. Kumar, “Rapid detection of malaria infection in vivo by laser desorption mass spectrometry,” Am. J. Trop. Med. Hyg.71(5), 546–551 (2004). [PubMed]
  5. T. Hänscheid, T. J. Egan, and M. P. Grobusch, “Haemozoin: from melatonin pigment to drug target, diagnostic tool, and immune modulator,” Lancet Infect. Dis.7(10), 675–685 (2007). [CrossRef] [PubMed]
  6. C. Coban, M. Yagi, K. Ohata, Y. Igari, T. Tsukui, T. Horii, K. J. Ishii, and S. Akira, “The malarial metabolite hemozoin and its potential use as a vaccine adjuvant,” Allergol. Int.59(2), 115–124 (2010). [CrossRef] [PubMed]
  7. J. M. Bélisle, S. Costantino, M. L. Leimanis, M.-J. Bellemare, D. Scott Bohle, E. Georges, and P. W. Wiseman, “Sensitive detection of malaria infection by third harmonic generation imaging,” Biophys. J.94(4), L26–L28 (2008). [CrossRef] [PubMed]
  8. B. R. Wood, E. Bailo, M. A. Khiavi, L. Tilley, S. Deed, T. Deckert-Gaudig, D. McNaughton, and V. Deckert, “Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte,” Nano Lett.11(5), 1868–1873 (2011). [CrossRef] [PubMed]
  9. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J.85(3), 1974–1979 (2003). [CrossRef] [PubMed]
  10. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A.105(52), 20701–20704 (2008). [CrossRef] [PubMed]
  11. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]
  12. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express17(8), 6230–6238 (2009). [CrossRef] [PubMed]
  13. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010). [CrossRef]
  14. W. Kim, S. K. Ozdemir, J. Zhu, L. He, and L. Yang, “Demonstration of mode splitting in an optical microcavity in aqueous environment,” Appl. Phys. Lett.97(7), 071111 (2010). [CrossRef]
  15. W. Kim, S. K. Ozdemir, J. Zhu, and L. Yang, “Observation and characterization of mode splitting in microsphere resonators in aquatic environment,” Appl. Phys. Lett.98(14), 141106 (2011). [CrossRef]
  16. T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A.108(15), 5976–5979 (2011). [CrossRef] [PubMed]
  17. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011). [CrossRef] [PubMed]
  18. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  19. P. W. Stephens, S. Pagola, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment beta-haematin,” Nature404(6775), 307–310 (2000). [CrossRef] [PubMed]
  20. C. Coban, Y. Igari, M. Yagi, T. Reimer, S. Koyama, T. Aoshi, K. Ohata, T. Tsukui, F. Takeshita, K. Sakurai, T. Ikegami, A. Nakagawa, T. Horii, G. Nuñez, K. J. Ishii, and S. Akira, “Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9,” Cell Host Microbe7(1), 50–61 (2010). [CrossRef] [PubMed]
  21. B. Y. H. Liu and D. Y. H. Pui, “A submicron aerosol standard and the primary, absolute calibration of the condensation nucleicounter,” J. Colloid Interface Sci.47(1), 155–171 (1974). [CrossRef]
  22. E. O. Knutson and K. T. Whitby, “Aerosol classification by electric mobility: apparatus, theory, and applications,” J. Aerosol Sci.6(6), 443–451 (1975). [CrossRef]
  23. J. Schurr and K. Schmitz, “Dynamic light scattering studies of biopolymers: effects of charge, shape, and flexibility,” Ann. Rev. Phys. Chem. 37(271), (1986).
  24. C. William, Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (John Wiley & Sons, 1999).
  25. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett.99(17), 173603 (2007). [CrossRef] [PubMed]
  26. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B17(6), 1051–1057 (2000). [CrossRef]
  27. V. S. Ilchenko and M. L. Gorodetsky, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys.2(6), 1004–1009 (1992).
  28. J. Zhu, S. K. Özdemir, L. He, D. R. Chen, and L. Yang, “Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities,” Opt. Express19(17), 16195–16206 (2011). [CrossRef] [PubMed]
  29. J. Zhu, Ultra-high-Q microresonator with applications towards single nanoparticle sensing (Washington University in St. Louis, Ph.D dissertation, 2011).
  30. S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81(10), 103110 (2010). [CrossRef] [PubMed]
  31. S. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A83(3), 033817 (2011). [CrossRef]
  32. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A.105(37), 13730–13735 (2008). [CrossRef] [PubMed]
  33. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28(4), 272–274 (2003). [CrossRef] [PubMed]
  34. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B23(7), 1381–1389 (2006). [CrossRef]
  35. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B20(9), 1937–1946 (2003). [CrossRef]
  36. M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J.92(12), 4466–4472 (2007). [CrossRef] [PubMed]
  37. X. Yi, Y. F. Xiao, Y. Li, Y. C. Liu, B. B. Li, Z. P. Liu, and Q. H. Gong, “Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator,” Appl. Phys. Lett.97(20), 203705 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited