OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

CMOS buried Quad p-n junction photodetector for multi-wavelength analysis

Charles Richard, Thierry Courcier, Patrick Pittet, Stéphane Martel, Luc Ouellet, Guo-Neng Lu, Vincent Aimez, and Paul G. Charette  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2053-2061 (2012)
http://dx.doi.org/10.1364/OE.20.002053


View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a buried quad p-n junction (BQJ) photodetector fabricated with a HV (high-voltage) CMOS process. Multiple buried junction photodetectors are wavelength-sensitive devices developed for spectral analysis applications where a compact integrated solution is preferred over systems involving bulk optics or a spectrometer due to physical size limitations. The BQJ device presented here is designed for chip-based biochemical analyses using simultaneous fluorescence labeling of multiple analytes such as with advanced labs-on-chip or miniaturized photonics-based biosensors. Modeling and experimental measurements of the spectral response of the device are presented. A matrix-based method for estimating individual spectral components in a compound spectrum is described. The device and analysis method are validated via a test setup using individually modulated LEDs to simulate light from 4-component fluorescence emission.

© 2012 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(330.6180) Vision, color, and visual optics : Spectral discrimination
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Detectors

History
Original Manuscript: September 20, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: January 4, 2012
Published: January 17, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Charles Richard, Thierry Courcier, Patrick Pittet, Stéphane Martel, Luc Ouellet, Guo-Neng Lu, Vincent Aimez, and Paul G. Charette, "CMOS buried Quad p-n junction photodetector for multi-wavelength analysis," Opt. Express 20, 2053-2061 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-3-2053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. N. Lu, M. B. Chouikha, G. Sou, and M. Sedjil, “Colour detection using a buried double p-n junction structure implemented in the CMOS process,” Electron. Lett.32(6), 594–596 (1996). [CrossRef]
  2. F. Yang and A. H. Titus, “Integrated colour detectors in 0.18 µm CMOS technology,” Electron. Lett.43(23), 1279–1281 (2007). [CrossRef]
  3. K. Liang, W. Li, H. R. Ren, X. L. Liu, W. J. Wang, R. Yang, and D. J. Han, “Color measurement for RGB white LEDs in solid-state lighting using a BDJ photodetector,” Displays30(3), 107–113 (2009). [CrossRef]
  4. D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE5210, 105–115 (2004). [CrossRef]
  5. T. Ross, R. K. Henderson, B. Rae, and D. Renshaw, “A buried triple-junction self-reset pixel in a 0.35µm high voltage CMOS process,” in Proceedings of International Image Sensor Workshop (Cliffhouse Resort Ogunquit, Maine USA, 2007), pp. 279–282.
  6. M. Ben Chouikha, G. N. Lu, M. Sedjil, and G. Sou, “Colour detection using buried triple pn junction structure implemented in BiCMOS process,” Electron. Lett.34(1), 120–122 (1998). [CrossRef]
  7. R. F. Lyon and P. M. Hubel, “Eyeing the camera: into the next century,” in Proceedings of IS&T/SID 10th Color Imaging Conference (The Society for Imaging Science and Technology, Scottsdale, Arizona, USA, 2002), pp. 349–355.
  8. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt.6(3), 311–318 (2001). [CrossRef] [PubMed]
  9. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000). [CrossRef] [PubMed]
  10. C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009). [CrossRef] [PubMed]
  11. G. N. Lu, “A dual-wavelength method using the BDJ detector and its application to iron concentration measurement,” Meas. Sci. Technol.10(4), 312–315 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited