OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance

Neval A. Cinel, Serkan Bütün, and Ekmel Özbay  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2587-2597 (2012)
http://dx.doi.org/10.1364/OE.20.002587


View Full Text Article

Enhanced HTML    Acrobat PDF (1323 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a label-free, optical nano-biosensor based on the Localized Surface Plasmon Resonance (LSPR) that is observed at the metal-dielectric interface of silver nano-disk arrays located periodically on a sapphire substrate by Electron-Beam Lithography (EBL). The nano-disk array was designed by finite-difference and time-domain (FDTD) algorithm-based simulations. Refractive index sensitivity was calculated experimentally as 221-354 nm/RIU for different sized arrays. The sensing mechanism was first tested with a biotin-avidin pair, and then a preliminary trial for sensing heat-killed Escherichia coli (E. coli) O157:H7 bacteria was done. Although the study is at an early stage, the results indicate that such a plasmonic structure can be applied to bio-sensing applications and then extended to the detection of specific bacteria species as a fast and low cost alternative.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Sensors

History
Original Manuscript: December 1, 2011
Revised Manuscript: December 31, 2011
Manuscript Accepted: January 3, 2012
Published: January 20, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Neval A. Cinel, Serkan Bütün, and Ekmel Özbay, "Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance," Opt. Express 20, 2587-2597 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-3-2587


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Anonymous, “ISO 9308-1,” (ISO, Geneva, Switzerland, 2000).
  2. P. Daly, T. Collier, and S. Doyle, “PCR-ELISA detection of Escherichia coli in milk,” Lett. Appl. Microbiol.34(3), 222–226 (2002). [CrossRef] [PubMed]
  3. B. L. Dylla, E. A. Vetter, J. G. Hughes, and F. R. Cockerill, “Evaluation of an immunoassay for direct detection of Escherichia coli O157 in stool specimens,” J. Clin. Microbiol.33(1), 222–224 (1995). [PubMed]
  4. R. P. Johnson, R. J. Durham, S. T. Johnson, L. A. MacDonald, S. R. Jeffrey, and B. T. Butman, “Detection of Escherichia coli O157:H7 in meat by an enzyme-linked immunosorbent assay, EHEC-Tek,” Appl. Environ. Microbiol.61(1), 386–388 (1995). [PubMed]
  5. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov.1(7), 515–528 (2002). [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  7. X. Y. Liu, X. D. Zeng, N. N. Mai, Y. Liu, B. Kong, Y. H. Li, W. Z. Wei, and S. L. Luo, “Amperometric glucose biosensor with remarkable acid stability based on glucose oxidase entrapped in colloidal gold-modified carbon ionic liquid electrode,” Biosens. Bioelectron.25(12), 2675–2679 (2010). [CrossRef] [PubMed]
  8. I. Vostiar, J. Tkac, E. Sturdik, and P. Gemeiner, “Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe,” Bioelectrochemistry56(1-2), 113–115 (2002). [CrossRef] [PubMed]
  9. A. Malave, M. Tewes, T. Gronewold, and M. Lohndorf, “Development of impedance biosensors with nanometer gaps for marker-free analytical measurements,” Microelectron. Eng.78–79, 587–592 (2005). [CrossRef]
  10. W. Zhao, J. J. Xu, and H. Y. Chen, “Electrochemical biosensors based on layer-by-layer assemblies,” Electroanalysis18(18), 1737–1748 (2006). [CrossRef]
  11. M. H. Meyer, M. Stehr, S. Bhuju, H. J. Krause, M. Hartmann, P. Miethe, M. Singh, and M. Keusgen, “Magnetic biosensor for the detection of Yersinia pestis,” J. Microbiol. Methods68(2), 218–224 (2007). [CrossRef] [PubMed]
  12. J. Llandro, J. J. Palfreyman, A. Ionescu, and C. H. Barnes, “Magnetic biosensor technologies for medical applications: a review,” Med. Biol. Eng. Comput.48(10), 977–998 (2010).
  13. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  14. K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc.125(2), 588–593 (2003). [CrossRef] [PubMed]
  15. M. Kahraman, M. M. Yazici, F. Sahin, O. F. Bayrak, and M. Culha, “Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles,” Appl. Spectrosc.61(5), 479–485 (2007). [CrossRef] [PubMed]
  16. F. S. Ligler and C. A. R. Taitt, Optical Biosensors: Present and Future, 1st ed. (Elsevier, 2002), pp. viii, 607 p.
  17. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998). [CrossRef]
  18. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004). [CrossRef] [PubMed]
  19. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc.123(7), 1471–1482 (2001). [CrossRef]
  20. J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion,” J. Phys. Chem. B107(8), 1772–1780 (2003). [CrossRef]
  21. Z. T. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett.95, 033114 (2009).
  22. Z. Liu, A. Boltasseva, R. H. Pedersen, R. M. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.)2(1), 45–51 (2008). [CrossRef]
  23. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004). [CrossRef]
  24. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006). [CrossRef] [PubMed]
  25. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  26. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  27. F. Y. Lee, K. H. Fung, T. L. Tang, W. Y. Tam, and C. T. Chan, “Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography,” Curr. Appl. Phys.9(4), 820–825 (2009). [CrossRef]
  28. A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng.83(4-9), 1464–1467 (2006). [CrossRef]
  29. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000). [CrossRef]
  30. A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf.26(2), 141–149 (2003). [CrossRef]
  31. P. Rai-Choudhukry, Handbook of Microlithography, Micromachining, and Microfabrication, IEE materials and devices series (SPIE Optical Engineering Press, 1997).
  32. Pierce, Avidin-Biotin Technical Handbook (Thermo Scientific, 2010).
  33. J. X. Fu, A. Collins, and Y. P. Zhao, “Optical properties and biosensor application of ultrathin silver films prepared by oblique angle deposition,” J. Phys. Chem. C112(43), 16784–16791 (2008). [CrossRef]
  34. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease,” Nano Lett.4(6), 1029–1034 (2004). [CrossRef]
  35. T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  37. S. L. Zhu, F. Li, C. L. Du, and Y. Q. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem.134(1), 193–198 (2008). [CrossRef]
  38. B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009). [CrossRef]
  39. N. Menon, “Optical biosensors:applying photonics products to the biomedical diagnostics market,” in Optical Fiber Communication Conference (OFC), (Los Angeles, California, 2004).
  40. G. P. Wiederrecht, Handbook of Nanoscale Optics and Electronics (Elsevier, 2010).
  41. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002). [CrossRef] [PubMed]
  42. S. M. Radke and E. C. Alocilja, “A high density microelectrode array biosensor for detection of E. coli O157:H7,” Biosens. Bioelectron.20(8), 1662–1667 (2005). [CrossRef] [PubMed]
  43. C. Ruan, K. Zeng, O. K. Varghese, and C. A. Grimes, “Magnetoelastic immunosensors: amplified mass immunosorbent assay for detection of Escherichia coli O157:H7,” Anal. Chem.75(23), 6494–6498 (2003). [CrossRef] [PubMed]
  44. A. Subramanian, J. Irudayaraj, and T. Ryan, “A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7,” Biosens. Bioelectron.21(7), 998–1006 (2006). [CrossRef] [PubMed]
  45. S. L. Zhu, C. L. Du, and Y. Q. Fu, “Localized surface plasmon resonance-based hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B,” Opt. Mater.31(11), 1608–1613 (2009). [CrossRef]
  46. S. L. Zhu, C. L. Du, and Y. Q. Fu, “Fabrication and characterization of rhombic silver nanoparticles for biosensing,” Opt. Mater.31(6), 769–774 (2009). [CrossRef]
  47. C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron.22(6), 926–932 (2007). [CrossRef] [PubMed]
  48. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited