OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Dipole, quadrupole and octupole plasmon resonance modes in non-concentric nanocrescent/nanodisk structure: local field enhancement in the visible and near infrared regions

Y. Zhang, T.Q. Jia, S.A. Zhang, D.H. Feng, and Z. Z. Xu  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2924-2931 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2254 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By deviating the nanodisk from the center in the silver nanocrescent/nanodisk structure, we find that the dipole, quadrupole and octupole modes can all induce very high local electric field enhancement (LFE, more than 750) for the coupling of nanocrescent and crescent gap modes, which makes the resonant wavelengths of the non-concentric nanostructures change from the visible to near infrared regions. In addition, the LFE factor of the quadrupole mode is more than 1000, which is suitable for single molecular detection by local surface enhanced spectroscopy.

© 2012 OSA

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:

Original Manuscript: September 16, 2011
Revised Manuscript: November 29, 2011
Manuscript Accepted: December 8, 2011
Published: January 24, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Y. Zhang, T.Q. Jia, S.A. Zhang, D.H. Feng, and Z. Z. Xu, "Dipole, quadrupole and octupole plasmon resonance modes in non-concentric nanocrescent/nanodisk structure: local field enhancement in the visible and near infrared regions," Opt. Express 20, 2924-2931 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007). [CrossRef]
  2. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  4. T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010). [CrossRef] [PubMed]
  5. A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Nanophotonic split-ring resonators as dichroics for molecular spectroscopy,” Appl. Phys. Lett. 93(2), 023121 (2008). [CrossRef]
  6. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003). [CrossRef] [PubMed]
  7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  8. J. M. McMahon, A.-I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009). [CrossRef] [PubMed]
  9. B. M. Ross and L. P. Lee, “Creating high density nanoantenna arrays via plasmon enhanced particle-cavity (PEP-C) architectures,” Opt. Express 17(8), 6860–6866 (2009). [CrossRef] [PubMed]
  10. J. Kim, G. L. Liu, Y. Lu, and L. P. Lee, “Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities,” Opt. Express 13(21), 8332–8338 (2005). [CrossRef] [PubMed]
  11. B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology 19(27), 275201 (2008). [CrossRef] [PubMed]
  12. G. L. Liu, Y. Lu, J. Kim, J. C. Doll, and L. P. Lee, “Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging,” Adv. Mater. (Deerfield Beach Fla.) 17(22), 2683–2688 (2005). [CrossRef]
  13. F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007). [CrossRef]
  14. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009). [CrossRef] [PubMed]
  15. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010). [CrossRef] [PubMed]
  16. Y. Zhang, T. Q. Jia, D. H. Feng, and Z. Z. Xu, “Quadrupole plasmon resonance mode in nanocrescent/nanodisk structure: Local field enhancement and tunability in the visible light region,” Appl. Phys. Lett. 98(16), 163110 (2011). [CrossRef]
  17. L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical properties of the crescent-shaped nanohole Antenna,” Nano Lett. 9(5), 1956–1961 (2009). [CrossRef] [PubMed]
  18. Y. Choi, S. Hong, and L. P. Lee, “Shadow overlap ion-beam lithography for nanoarchitectures,” Nano Lett. 9(11), 3726–3731 (2009). [CrossRef] [PubMed]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  20. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  21. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  22. Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10(10), 4186–4191 (2010). [CrossRef] [PubMed]
  23. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82(12), 125430 (2010). [CrossRef]
  24. T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007). [CrossRef]
  25. J. Jung, T. Søndergaard, and S. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009). [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John-Wiley and Sons, 1983).
  27. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005). [CrossRef] [PubMed]
  28. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010). [CrossRef] [PubMed]
  29. A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B 83(19), 193404 (2011). [CrossRef]
  30. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009). [CrossRef] [PubMed]
  31. L. Mao, Z. Li, B. Wu, and H. Xu, “Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited