OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 5 — Apr. 26, 2012

Resonant optical excitations in complementary plasmonic nanostructures

David Rossouw and Gianluigi A. Botton  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 6968-6973 (2012)
http://dx.doi.org/10.1364/OE.20.006968


View Full Text Article

Enhanced HTML    Acrobat PDF (1671 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We compare the plasmonic response of two complementary structures to a scanning electron probe; a silver nanowire and a nanoslot in a silver film of comparable dimensions, desirable for their localized electromagnetic enhancement and enhanced optical transmission respectively. Through electron energy loss spectroscopy, multiple plasmonic resonant harmonics setup in both structures are resolved with inverted phase, in agreement with Babinet’s principle, and of consequence in the design and fabrication of nanostructures.

© 2012 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 15, 2012
Revised Manuscript: March 6, 2012
Manuscript Accepted: March 8, 2012
Published: March 12, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
David Rossouw and Gianluigi A. Botton, "Resonant optical excitations in complementary plasmonic nanostructures," Opt. Express 20, 6968-6973 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-7-6968


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957). [CrossRef]
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  4. S. A. Maier, H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005). [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  6. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  7. C. Liu, V. Kamaev, Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005). [CrossRef]
  8. G. von Maltzahn, J.-H. Park, K. Y. Lin, N. Singh, C. Schwöppe, R. Mesters, W. E. Berdel, E. Ruoslahti, M. J. Sailor, S. N. Bhatia, “Nanoparticles that communicate in vivo to amplify tumour targeting,” Nat. Mater. 10(7), 545–552 (2011). [CrossRef] [PubMed]
  9. C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  10. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  11. L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8(3), 935–940 (2008). [CrossRef] [PubMed]
  12. M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007). [CrossRef]
  13. M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008). [CrossRef] [PubMed]
  14. M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, T. B. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009). [CrossRef]
  15. B. Schaffer, U. Hohenester, A. Trügler, F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009). [CrossRef]
  16. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011). [CrossRef] [PubMed]
  17. O. Nicoletti, M. Wubs, N. A. Mortensen, W. Sigle, P. A. van Aken, P. A. Midgley, “Surface plasmon modes of a single silver nanorod: an electron energy loss study,” Opt. Express 19(16), 15371–15379 (2011). [CrossRef] [PubMed]
  18. W. Sigle, J. Nelayah, C. T. Koch, P. A. van Aken, “Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire,” Opt. Lett. 34(14), 2150–2152 (2009). [CrossRef] [PubMed]
  19. B. Ögüt, R. Vogelgesang, W. Sigle, N. Talebi, C. T. Koch, P. A. van Aken, “Hybridized metal slit eigenmodes as an illustration of Babinet’s principle,” ACS Nano 5(8), 6701–6706 (2011). [CrossRef] [PubMed]
  20. F. von Cube, S. Irsen, J. Niegemann, C. Matyssek, W. Hergert, K. Busch, S. Linden, “Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [Invited],” Opt. Mater. Express 1(5), 1009 (2011). [CrossRef]
  21. F. J. García de Abajo, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited