OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Real-time quantitative visualization of 3D structural information

Sergey A. Alexandrov, Shikhar Uttam, Rajan K. Bista, Chengquan Zhao, and Yang Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9203-9214 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3250 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel approach for the real time visualization and quantification of the 3D spatial frequencies in an image domain. Our approach is based on the spectral encoding of spatial frequency principle and permits the formation of an image as a color map in which spatially separated spectral wavelengths correspond to the dominant 3D spatial frequencies of the object. We demonstrate that our approach can visualize and analyze the dominant axial internal structure for each image point in real time and with nanoscale sensitivity to structural changes. Computer modeling and experimental results of instantaneous color visualization and quantification of 3D structures of a model system and biological samples are presented.

© 2012 OSA

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(070.6110) Fourier optics and signal processing : Spatial filtering
(180.6900) Microscopy : Three-dimensional microscopy
(290.1350) Scattering : Backscattering
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: February 29, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: March 30, 2012
Published: April 5, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Sergey A. Alexandrov, Shikhar Uttam, Rajan K. Bista, Chengquan Zhao, and Yang Liu, "Real-time quantitative visualization of 3D structural information," Opt. Express 20, 9203-9214 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge; New York, 1999).
  2. E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969). [CrossRef]
  3. V. I. Kukulin, V. N. Pomerantsev, and J. Horácek, “Reconstruction of the potential from scattering data,” Phys. Rev. A42(5), 2719–2727 (1990). [CrossRef] [PubMed]
  4. O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt.57(9), 686–699 (2010). [CrossRef]
  5. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett.97(16), 168102 (2006). [CrossRef] [PubMed]
  6. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009). [CrossRef] [PubMed]
  7. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008). [CrossRef] [PubMed]
  8. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express7(9), 305–310 (2000). [CrossRef] [PubMed]
  9. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett.34(5), 653–655 (2009). [CrossRef] [PubMed]
  10. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett.34(1), 79–81 (2009). [CrossRef] [PubMed]
  11. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000). [CrossRef] [PubMed]
  12. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett.30(24), 3305–3307 (2005). [CrossRef] [PubMed]
  13. T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy,” Opt. Express14(23), 11088–11102 (2006). [CrossRef] [PubMed]
  14. Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett.30(18), 2445–2447 (2005). [CrossRef] [PubMed]
  15. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998). [CrossRef]
  16. K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res.69(3), 1199–1204 (2009). [CrossRef] [PubMed]
  17. A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003). [CrossRef] [PubMed]
  18. T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Three-dimensional depth-resolved and extended-resolution micro-particle characterization by holographic light scattering spectroscopy,” Opt. Express18(24), 25116–25126 (2010). [CrossRef] [PubMed]
  19. N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: subcellular morphometry in situ with Fourier filtering,” Opt. Lett.26(14), 1063–1065 (2001). [CrossRef] [PubMed]
  20. R. M. Pasternack, Z. Qian, J. Y. Zheng, D. N. Metaxas, and N. N. Boustany, “Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters,” Opt. Express17(14), 12001–12012 (2009). [CrossRef] [PubMed]
  21. B. A. R. M. Rangayyan and C. Serrano, Color Image Processing with Biomedical Applications (SPIE Press, Bellingham, Washington, 2011).
  22. D. B. Judd and G. Wyszecki, Color in business, science, and industry (Wiley, New York, 1975).
  23. D. W. Holder and R. J. North, “A Schlieren apparatus giving an image in colour,” Nature169(4298), 466 (1952). [CrossRef]
  24. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, Berlin; New York, 2001).
  25. J. Bescos and T. C. Strand, “Optical pseudocolor encoding of spatial frequency information,” Appl. Opt.17(16), 2524–2531 (1978). [PubMed]
  26. F. T. S. Yu, S. L. Zhuang, T. H. Chao, and M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt.19(17), 2986–2990 (1980). [CrossRef] [PubMed]
  27. S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency,” J. Opt. A, Pure Appl. Opt.10(2), 025304 (2008). [CrossRef]
  28. S. A. Alexandrov, S. Uttam, R. K. Bista, and Y. Liu, “Spectral contrast imaging microscopy,” Opt. Lett.36(17), 3323–3325 (2011). [CrossRef] [PubMed]
  29. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express15(21), 13640–13648 (2007). [CrossRef] [PubMed]
  30. S. K. Shevell, The Science of Color (Elsevier, Amsterdam; Boston, 2003).
  31. N. T. Clancy, D. Stoyanov, L. Maier-Hein, A. Groch, G. Z. Yang, and D. S. Elson, “Spectrally encoded fiber-based structured lighting probe for intraoperative 3D imaging,” Biomed. Opt. Express2(11), 3119–3128 (2011). [CrossRef] [PubMed]
  32. K. Chen, A. Taflove, Y. L. Kim, and V. Backman, “Self-assembled patterns of nanospheres with symmetries from submicrons to centimeters,” Appl. Phys. Lett.86(3), 033101 (2005). [CrossRef]
  33. Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, “Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method,” Synth. Met.159(17-18), 1744–1750 (2009). [CrossRef]
  34. P. Wang, R. Bista, R. Bhargava, R. E. Brand, and Y. Liu, “Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis,” Opt. Lett.35(17), 2840–2842 (2010). [CrossRef] [PubMed]
  35. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited