OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal

Zhengqi Liu, Jinting Hang, Jing Chen, Zhendong Yan, Chaojun Tang, Zhuo Chen, and Peng Zhan  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9215-9225 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1670 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The near infrared transmission of corrugated metal films deposited on hetero-colloidal crystals is investigated. The transmission response of the quasi-three-dimensional (quasi-3D) metal film is modified by controlling the nominal thickness of a dielectric layer pre-deposited on the top surface of the colloidal crystal to form a new hetero-colloidal crystal. An extraordinary optical transmission (EOT) phenomenon could be presented in such metallodielectric (MD) architectures. We have found that the main transmission peak is suppressed as the thickness of the intercalated dielectric layer is increased. We propose that the observed EOT is a result of constructive interference between a localized sphere-like plasmon mode and an index-guided eigen mode mainly confined in the colloidal crystal, which is confirmed by our numerical simulations. Based on the MD microstructures, a distinct plasmon sensitivity response difference is achieved, which indicates potential applications for biochemical sensing.

© 2012 OSA

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: March 6, 2012
Revised Manuscript: March 29, 2012
Manuscript Accepted: April 2, 2012
Published: April 5, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Zhengqi Liu, Jinting Hang, Jing Chen, Zhendong Yan, Chaojun Tang, Zhuo Chen, and Peng Zhan, "Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal," Opt. Express 20, 9215-9225 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express18(21), 22255–22270 (2010). [CrossRef] [PubMed]
  5. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express19(27), 26186–26197 (2011). [CrossRef] [PubMed]
  6. S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011). [CrossRef] [PubMed]
  7. S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012). [CrossRef]
  8. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  9. Y. H. Ye, Z. B. Wang, D. S. Yan, and J. Y. Zhang, “Role of shape in middle-infrared transmission enhancement through periodically perforated metal films,” Opt. Lett.32(21), 3140–3142 (2007). [CrossRef] [PubMed]
  10. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]
  11. Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett.87(9), 091105 (2005). [CrossRef]
  12. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011). [CrossRef] [PubMed]
  13. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005). [CrossRef]
  14. W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005). [CrossRef]
  15. Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett.35(13), 2124–2126 (2010). [CrossRef] [PubMed]
  16. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett.101(8), 087401 (2008). [CrossRef] [PubMed]
  17. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006). [CrossRef] [PubMed]
  18. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005). [CrossRef]
  19. Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010). [CrossRef]
  20. S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett.93(10), 101113 (2008). [CrossRef]
  21. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev.4(2), 311–335 (2010). [CrossRef]
  22. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004). [CrossRef] [PubMed]
  23. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008). [CrossRef] [PubMed]
  24. Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology21(19), 195203 (2010). [CrossRef] [PubMed]
  25. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  26. P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.)18(12), 1612–1616 (2006). [CrossRef]
  27. L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process.84(4), 373–377 (2006). [CrossRef]
  28. L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express17(2), 761–772 (2009). [CrossRef] [PubMed]
  29. Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process.92(2), 291–294 (2008). [CrossRef]
  30. Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express18(4), 3546–3555 (2010). [CrossRef] [PubMed]
  31. B. F. Bai, L. F. Li, and L. J. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett.30(18), 2360–2362 (2005). [CrossRef] [PubMed]
  32. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett.25(9), 595–597 (2000). [CrossRef] [PubMed]
  33. J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.)20(1), 123–128 (2008). [CrossRef]
  34. J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir26(11), 7859–7864 (2010). [CrossRef] [PubMed]
  35. C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt.9(9), S345–S349 (2007). [CrossRef]
  36. L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process.81(5), 911–913 (2005). [CrossRef]
  37. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys.87(10), 7152–7158 (2000). [CrossRef]
  38. T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B70(23), 235113 (2004). [CrossRef]
  39. S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett.92(19), 191106 (2008). [CrossRef]
  40. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  41. Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express19(24), 23889–23900 (2011). [CrossRef] [PubMed]
  42. C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B80(16), 165401 (2009). [CrossRef]
  43. Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett.96(5), 051904 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited