OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Intracellular label-free gold nanorods imaging with photoacoustic microscopy

Sihua Yang, Fei Ye, and Da Xing  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10370-10375 (2012)
http://dx.doi.org/10.1364/OE.20.010370


View Full Text Article

Enhanced HTML    Acrobat PDF (1020 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Noninvasive photoacoustic microscopy was developed to image intracellular gold nanorods with high optical-absorption contrast. The endocytosed gold nanorods in MCF7 cells can be detected and imaged with the home-made photoacoustic microscope. Cell nucleus and gold nanorods in cytoplasm were clearly identified after hematoxylin and eosin (H&E) staining with dual-wavelength excitation. The intracellular gold nanorods were successfully monitored, and that the time-dependent uptake and distribution of the gold nanorods in the cells were clearly shown. The result demonstrated an application of photoacoustic microscopy for complements to imaging of nonfluorescent nanoparticles, which will arm the in vivo microscopic imaging method to the nano-bio research.

© 2012 OSA

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(110.7170) Imaging systems : Ultrasound
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 29, 2012
Revised Manuscript: April 13, 2012
Manuscript Accepted: April 16, 2012
Published: April 20, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Sihua Yang, Fei Ye, and Da Xing, "Intracellular label-free gold nanorods imaging with photoacoustic microscopy," Opt. Express 20, 10370-10375 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-9-10370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009). [CrossRef] [PubMed]
  2. O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett.9(12), 4093–4097 (2009). [CrossRef] [PubMed]
  3. T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007). [CrossRef] [PubMed]
  4. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  5. H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010). [CrossRef] [PubMed]
  6. D. L. Farkas, D. V. Nicolau, and R. C. Leif, “Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy,” Proc. SPIE7568, 75680A (2010).
  7. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007). [CrossRef] [PubMed]
  8. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005). [CrossRef] [PubMed]
  9. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  10. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science330(6002), 353–356 (2010). [CrossRef] [PubMed]
  11. V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics5(2), 110–116 (2011). [CrossRef]
  12. D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012). [CrossRef] [PubMed]
  13. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009). [CrossRef] [PubMed]
  14. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009). [CrossRef]
  15. S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009). [CrossRef] [PubMed]
  16. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010). [CrossRef] [PubMed]
  17. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett.36(7), 1134–1136 (2011). [CrossRef] [PubMed]
  18. Z. X. Xie, S. L. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009). [CrossRef] [PubMed]
  19. G. J. Huang, S. H. Yang, Y. Yuan, and D. Xing, “Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett.99(12), 123701 (2011). [CrossRef]
  20. Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008). [CrossRef] [PubMed]
  21. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008). [CrossRef] [PubMed]
  22. Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express19(3), 2426–2431 (2011). [CrossRef] [PubMed]
  23. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006). [CrossRef] [PubMed]
  24. D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express15(23), 15566–15575 (2007). [CrossRef] [PubMed]
  25. M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007). [CrossRef] [PubMed]
  26. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004). [CrossRef] [PubMed]
  27. P. C. Li, C. R. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express16(23), 18605–18615 (2008). [CrossRef] [PubMed]
  28. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett.31(24), 3623–3625 (2006). [CrossRef] [PubMed]
  29. N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small1(8-9), 875–882 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited