OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance

Brian J. Roxworthy and Kimani C. Toussaint, Jr.  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9591-9603 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1608 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using Au bowtie nanoantennas arrays (BNAs), we demonstrate that the performance and capability of plasmonic nanotweezers is strongly influenced by both the material comprising the thin adhesion layer used to fix Au to a glass substrate and the nanostructure orientation with respect to incident illumination. We find that a Ti adhesion layer provides up to 30% larger trap stiffness and efficiency compared to a Cr layer of equal thickness. Orientation causes the BNAs to operate as either (1) a 2D optical trap capable of efficient trapping and manipulation of particles as small as 300 nm in diameter, or (2) a quasi-3D trap, with the additional capacity for size-dependent particle sorting utilizing axial Rayleigh-Bénard convection currents caused by heat generation. We show that heat generation is not necessarily deleterious to plasmonic nanotweezers and achieve dexterous manipulation of nanoparticles with non-resonant illumination of BNAs.

© 2012 OSA

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 15, 2012
Revised Manuscript: April 2, 2012
Manuscript Accepted: April 3, 2012
Published: April 11, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Brian J. Roxworthy and Kimani C. Toussaint, "Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance," Opt. Express 20, 9591-9603 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5, 349–356 (2011). [CrossRef]
  2. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5, 5457–5462 (2011). [CrossRef] [PubMed]
  3. R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett.1, 2428–2434 (2010). [CrossRef]
  4. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14, 1448–1461 (2008). [CrossRef]
  5. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10, 1006–1011 (2010). [CrossRef] [PubMed]
  6. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys.3, 477–480 (2007). [CrossRef]
  7. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9, 3387–3391 (2009). [CrossRef] [PubMed]
  8. A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole antennas: Analysis of the detection limit,” Appl. Phys. Lett.99, 151104 (2011). [CrossRef]
  9. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2, 365–370 (2008). [CrossRef]
  10. A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett.108, 026801 (2012). [CrossRef] [PubMed]
  11. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 1–6 (2011). [CrossRef]
  12. Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett.100, 021102 (2012). [CrossRef]
  13. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett.12, 796–801 (2012). [CrossRef] [PubMed]
  14. X. Miao and Y. L. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron.13, 1655–1662 (2007). [CrossRef]
  15. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17, 6018–6024 (2009). [CrossRef] [PubMed]
  16. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics4, 37–50 (2009). [CrossRef]
  17. H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009). [CrossRef] [PubMed]
  18. J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun.2, 1–6 (2011). [CrossRef]
  19. K. Wang, E. Schonbrun, P. Steinvurzel, and K. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10, 3506–3511 (2010). [CrossRef] [PubMed]
  20. V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73, 085417 (2006). [CrossRef]
  21. M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 041570 (2010). [CrossRef]
  22. A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific Publishing, 1998). [PubMed]
  23. R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Opt. Express19, 10571–10586 (2011). [CrossRef] [PubMed]
  24. N. Harris, J. J. Ford, and M. B. Cortie, “Optimization of plasmonic heating by gold nanospheres and nanoshells,” J. Phys. Chem. B110, 10701–10707 (2006). [CrossRef] [PubMed]
  25. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B82, 165424 (2010). [CrossRef]
  26. G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B84, 035415 (2011). [CrossRef]
  27. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787–2809 (2004). [CrossRef]
  28. A. Rorhbach, “Stiffness of optical traps: Quantitative agreement between experiment and theory,” Phys. Rev. Lett.95, 168102 (2005). [CrossRef]
  29. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Comm.214, 15–24 (2002). [CrossRef]
  30. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express16, 3712–3726 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (523 KB)     
» Media 2: AVI (1443 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited