OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Quantitative phase contrast optimised cancerous cell differentiation via ptychography

Daniel Claus, Andrew M. Maiden, Fucai Zhang, Francis G. R. Sweeney, Martin J. Humphry, Hermann Schluesener, and John M. Rodenburg  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 9911-9918 (2012)
http://dx.doi.org/10.1364/OE.20.009911


View Full Text Article

Enhanced HTML    Acrobat PDF (1607 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper shows that visible-light ptychography can be used to distinguish quantitatively between healthy and tumorous unstained cells. Advantages of ptychography in comparison to conventional phase-sensitive imaging techniques are highlighted. A novel procedure to automatically refocus ptychographic reconstructions is also presented, which improves quantitative analysis.

© 2012 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.5070) Image processing : Phase retrieval
(110.0180) Imaging systems : Microscopy
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 5, 2012
Revised Manuscript: February 22, 2012
Manuscript Accepted: February 23, 2012
Published: April 16, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Daniel Claus, Andrew M. Maiden, Fucai Zhang, Francis G. R. Sweeney, Martin J. Humphry, Hermann Schluesener, and John M. Rodenburg, "Quantitative phase contrast optimised cancerous cell differentiation via ptychography," Opt. Express 20, 9911-9918 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-9-9911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Hoppe, “Diffraction in inhomogeneous primary wave fields: 1. principle of phase determination from electron diffraction interference,” Acta Crystallogr. A25, 495–501 (1969). [CrossRef]
  2. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard x-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007). [CrossRef] [PubMed]
  3. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science321, 379–382 (2008). [CrossRef] [PubMed]
  4. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature46, 436–439 (2010). [CrossRef]
  5. A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A28, 604–612 (2011). [CrossRef]
  6. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity:a nonlinear optimization approach,” Opt. Express16, 7264–7278 (2008). [CrossRef] [PubMed]
  7. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy109, 338–343 (2009). [CrossRef] [PubMed]
  8. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy109, 1256–1262 (2009). [CrossRef] [PubMed]
  9. G. Popescu, Quantitative Phase Imaging of Cells and Tissues, 1st ed. (McGraw-Hill, 2011).
  10. K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys.59, 1–99 (2010). [CrossRef]
  11. H. J. Schluesener and T. Xianglin, “Selection of recombinant phages binding to pathological endothelial and tumor cells of rat glioblastoma by in-vivo display,” J. Neurol. Sci.224, 77–82 (2004). [CrossRef] [PubMed]
  12. Sciencelearn.org, “What is cancer,” http://www.sciencelearn.org.nz/Contexts/See-through-Body/Looking-closer/What-is-cancer .
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  14. C. P. McElhinney, B. M. Hennely, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt.47, D71–D78 (2008). [CrossRef] [PubMed]
  15. D. Claus, “High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method,” Appl. Opt.49, 3187–3198 (2010). [CrossRef] [PubMed]
  16. H. Haferkorn, Optik, Physikalisch-technische Grunlagen und Anwendungen (Willey-VCH, 2003).
  17. S. L. Shorte and F. Frischknecht, editors, Imaging cellular and molecular biological functions (Springer, 2007). [CrossRef]
  18. P. Rabinovitch, “Introduction to cell cycle analysis,” http://www.phnxflow.com/Introduction to Cell Cycle Analysis.pdf.
  19. Z. Hameed and C. Wang, “Edge detection using histogram equalization and multi-filtering process,” in Proceedings of IEEE Conference on Circuits and Systems (IEEE, 2011), pp. 1077–1080.
  20. G. S. Benham, “Practical aspects of objective lens selection for confocal and multiphoton digital imaging techniques,” in Cell biological applications of confocal microscopy, B. Matsumoto ed. (Academic Press, 2002), pp. 245–299. [CrossRef]
  21. L. Granero, V. Micó, Z. Zalevsky, and J. Garcia, “Synthetic aperture superresolved microscopy in digital lensless fourier holography by time and angular multiplexing of the object information,” Appl. Opt.49, 3187–3198 (2010). [CrossRef]
  22. M. D. Iturbe Castillo, D. Sánchez de-la Llave, R. Ramos García, L. I. Olivos-Pérez, M. Rodríguez-Ortiz, and L. A. González, “Real-time self-induced nonlinear optical zernike-type filter in a bacteriorhodopsin film,” Opt. Eng.40, 2367–2368 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited