OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix

Youngchan Kim, Joonwoo Jeong, Jaeduck Jang, Mahn Won Kim, and YongKeun Park  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9948-9955 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1692 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a high-speed holographic microscopic technique for quantitative measurement of polarization light-field, referred to as polarization holographic microscopy (PHM). Employing the principle of common-path interferometry, PHM quantitatively measures the spatially resolved Jones matrix components of anisotropic samples with only two consecutive measurements of spatially modulated holograms. We demonstrate the features of PHM with imaging the dynamics of liquid crystal droplets at a video-rate.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(160.3710) Materials : Liquid crystals
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: March 14, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 14, 2012
Published: April 17, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Youngchan Kim, Joonwoo Jeong, Jaeduck Jang, Mahn Won Kim, and YongKeun Park, "Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix," Opt. Express 20, 9948-9955 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Massoumian, R. Juškaitis, M. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003). [CrossRef] [PubMed]
  2. S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997). [CrossRef]
  3. R. C. Jones, “A new calculus for the treatment of optical systems. IV,” J. Opt. Soc. Am. 32(8), 486–493 (1942). [CrossRef]
  4. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005). [CrossRef] [PubMed]
  5. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007). [CrossRef] [PubMed]
  6. T. Tahara, Y. Awatsuji, Y. Shimozato, T. Kakue, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Single-shot polarization-imaging digital holography based on simultaneous phase-shifting interferometry,” Opt. Lett. 36(16), 3254–3256 (2011). [CrossRef] [PubMed]
  7. R. K. Singh, D. N. Naik, H. Itou, Y. Miyamoto, and M. Takeda, “Stokes holography,” Opt. Lett. 37(5), 966–968 (2012). [CrossRef] [PubMed]
  8. J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80(2), 972–985 (2001). [CrossRef] [PubMed]
  9. I. H. Shin, S. M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010). [CrossRef] [PubMed]
  10. N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15(26), 17690–17698 (2007). [CrossRef] [PubMed]
  11. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008). [CrossRef] [PubMed]
  12. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  13. G. Popescu, Y. K. Park, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006). [CrossRef] [PubMed]
  14. P. Poulin and D. A. Weitz, “Inverted and multiple nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 626–637 (1998). [CrossRef]
  15. T. Tixier, M. Heppenstall-Butler, and E. M. Terentjev, “Spontaneous size selection in cholesteric and nematic emulsions,” Langmuir 22(5), 2365–2370 (2006). [CrossRef] [PubMed]
  16. P. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).
  17. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).
  18. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011). [CrossRef] [PubMed]
  19. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).
  20. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by Fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001). [CrossRef]
  21. T. Lee, B. Senyuk, R. P. Trivedi, and I. I. Smalyukh, “Optical microscopy of soft matter systems,” arXiv:1108.3287 (2011).
  22. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), L1066–L1068 (2005). [CrossRef]
  23. R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006). [CrossRef] [PubMed]
  24. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007). [CrossRef]
  25. D. A. Higgins and B. J. Luther, “Watching molecules reorient in liquid crystal droplets with multiphoton-excited fluorescence microscopy,” J. Chem. Phys. 119(7), 3935–3942 (2003). [CrossRef]
  26. B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti- Stokes Raman scattering microscopy,” Opt. Express 15(21), 13585–13596 (2007). [CrossRef] [PubMed]
  27. B.-C. Chen and S.-H. Lim, “Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy,” Appl. Phys. Lett. 94(17), 171911 (2009). [CrossRef]
  28. T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010). [CrossRef] [PubMed]
  29. R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010). [CrossRef] [PubMed]
  30. K. Katoh, K. Hammar, P. J. S. Smith, and R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10(1), 197–210 (1999). [PubMed]
  31. R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996). [CrossRef] [PubMed]
  32. M. D. Shoulders and R. T. Raines, “Collagen structure and stability,” Annu. Rev. Biochem. 78(1), 929–958 (2009). [CrossRef] [PubMed]
  33. P. S. Frenette and G. F. Atweh, “Sickle cell disease: old discoveries, new concepts, and future promise,” J. Clin. Invest. 117(4), 850–858 (2007). [CrossRef] [PubMed]
  34. G. A. Barabino, M. O. Platt, and D. K. Kaul, “Sickle cell biomechanics,” Annu. Rev. Biomed. Eng. 12(1), 345–367 (2010). [CrossRef] [PubMed]
  35. Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012). [CrossRef]
  36. M. Aidoo, D. J. Terlouw, M. S. Kolczak, P. D. McElroy, F. O. ter Kuile, S. Kariuki, B. L. Nahlen, A. A. Lal, and V. Udhayakumar, “Protective effects of the sickle cell gene against malaria morbidity and mortality,” Lancet 359(9314), 1311–1312 (2002). [CrossRef] [PubMed]
  37. S. Cho, S. Kim, Y. Kim, and Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012). [CrossRef] [PubMed]
  38. A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009). [CrossRef] [PubMed]
  39. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010). [CrossRef] [PubMed]
  40. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010). [CrossRef] [PubMed]
  41. Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (597 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited