OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Scattering reduction at near-infrared frequencies using plasmonic nanostructures

Venkata Ananth Tamma, Yonghao Cui, and Wounjhang Park  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1041-1056 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5176 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Novel fabrication, detection and analysis approaches were employed to experimentally demonstrate scattering reduction by a plasmonic nanostructure operating at 1550 nm. The nanostructure consisted of a silicon nanorod surrounded by a plasmonic metamaterial cover comprised of eight gold nanowires and was fabricated by a combination of electron beam lithography, focused ion beam milling and dry and wet etching. The optical standing wave pattern of the device in the near-field was obtained using heterodyne near-field scanning optical microscopy. It was found that the spatial curvature of the interference fringes of the optical standing wave pattern was directly related to the scattering reduction of the device. The experiments were in excellent agreement with the theoretical predictions and suggested that the device reduced the scattering by 9.5 dB when compared to a bare silicon nanorod of diameter 240 nm and by 6 dB when compared to a bare silicon nanorod of diameter 160 nm.

© 2013 OSA

OCIS Codes
(290.5820) Scattering : Scattering measurements
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: November 19, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: December 28, 2012
Published: January 9, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Venkata Ananth Tamma, Yonghao Cui, and Wounjhang Park, "Scattering reduction at near-infrared frequencies using plasmonic nanostructures," Opt. Express 21, 1041-1056 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  3. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008). [CrossRef] [PubMed]
  4. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009). [CrossRef]
  6. V. A. Tamma, J. Blair, C. J. Summers, and W. Park, “Dispersion characteristics of silicon nanorod based carpet cloaks,” Opt. Express18(25), 25746–25756 (2010). [CrossRef] [PubMed]
  7. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am.65(4), 376–379 (1975). [CrossRef]
  8. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005). [CrossRef] [PubMed]
  9. P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008). [CrossRef]
  10. P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009). [CrossRef]
  11. G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A462(2074), 3027–3059 (2006). [CrossRef]
  12. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express15(10), 6314–6323 (2007). [CrossRef] [PubMed]
  13. A. Alu and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express15(12), 7578–7590 (2007). [CrossRef] [PubMed]
  14. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008). [CrossRef] [PubMed]
  15. E. Kallos, C. Argyropoulos, Y. Hao, and A. Alu, “Comparison of frequency responses of cloaking devices under non-monochromatic illumination,” Phys. Rev. B84(4), 045102 (2011). [CrossRef]
  16. S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(2), 026602 (2010). [CrossRef] [PubMed]
  17. M. G. Silveirinha, A. Alu, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B78(20), 205109 (2008). [CrossRef]
  18. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009). [CrossRef] [PubMed]
  19. A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105(26), 263906 (2010). [CrossRef] [PubMed]
  20. F. Bilotti, S. Tricarico, F. Pierini, and L. Vegni, “Cloaking apertureless near-field scanning optical microscopy tips,” Opt. Lett.36(2), 211–213 (2011). [CrossRef] [PubMed]
  21. S. Tricarico, F. Bilotti, and L. Vegni, “Reduction of optical forces exerted on nano-particles covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B82(4), 045109 (2010). [CrossRef]
  22. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(3), 036603 (2007). [CrossRef] [PubMed]
  23. M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B78(7), 075107 (2008). [CrossRef]
  24. F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys.10(11), 115035 (2008). [CrossRef]
  25. F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol.9(1), 55–61 (2010). [CrossRef]
  26. A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett.36(23), 4479–4481 (2011). [CrossRef] [PubMed]
  27. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285(16), 3412–3418 (2012). [CrossRef]
  28. S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83(19), 195116 (2011). [CrossRef]
  29. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009). [CrossRef] [PubMed]
  30. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012). [CrossRef]
  31. P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012). [CrossRef]
  32. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997). [CrossRef]
  33. R. Carminati, A. Madrazo, N. Nieto-Vesperinas, and J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82(2), 501–509 (1997). [CrossRef]
  34. P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination mode scanning near-field optical microscopy,” J. Appl. Phys.86(1), 648–656 (1999). [CrossRef]
  35. N. Tsumori, M. Takahashi, Y. Sakuma, and T. Saiki, “Experimental study of near-field light collection efficiency of aperture fiber probe at near-infrared wavelengths,” Appl. Opt.50(29), 5710–5713 (2011). [CrossRef] [PubMed]
  36. T. Saiki and N. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999). [CrossRef]
  37. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Characterizing whispering-gallery modes in microspheres by direct observation of the optical standing-wave pattern in the near field,” Opt. Lett.21(10), 698–700 (1996). [CrossRef] [PubMed]
  38. P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010). [CrossRef] [PubMed]
  39. G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999). [CrossRef]
  40. R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005). [CrossRef]
  41. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett.81(7), 1163–1165 (2002). [CrossRef]
  42. E. D. Palik, Handbook of Optical Constants of Solid (Academic, Orlando, Fla., 1985).
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  44. A. Nesci, R. Dändliker, and H. P. Herzig, “Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,” Opt. Lett.26(4), 208–210 (2001). [CrossRef] [PubMed]
  45. D. E. Aspnes, “Local-field effects and effective –medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982). [CrossRef]
  46. W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, (Springer, 2010), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited