OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Optical manipulation of self-aligned graphene flakes in liquid crystals

Christopher W. Twombly, Julian S. Evans, and Ivan I. Smalyukh  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1324-1334 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2716 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Graphene recently emerged as a new two-dimensional material platform with unique optical, thermal and electronic properties. Single- or few-atom-thick graphene flakes can potentially be utilized to form structured bulk composites that further enrich these properties and enable a broad range of new applications. Here we describe optical manipulation of self-aligned colloidal graphene flakes in thermotropic liquid crystals of nematic and cholesteric types. Three-dimensional rotational and translational manipulation of graphene flakes by means of holographic optical tweezers allows for non-contact spatial patterning of graphene, control of liquid crystal defects, and low-power optical realignment of the liquid crystal director using these flakes. Potential applications include optically- and electrically-controlled reconfigurable liquid crystalline dispersions of spontaneously aligning colloidal graphene flakes and new electro-optic devices with graphene-based interconnected transparent electrodes at surfaces and in the bulk of liquid crystals.

© 2013 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.3710) Materials : Liquid crystals
(180.6900) Microscopy : Three-dimensional microscopy
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 12, 2012
Revised Manuscript: December 24, 2012
Manuscript Accepted: December 24, 2012
Published: January 11, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Christopher W. Twombly, Julian S. Evans, and Ivan I. Smalyukh, "Optical manipulation of self-aligned graphene flakes in liquid crystals," Opt. Express 21, 1324-1334 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science275(5307), 1770–1773 (1997).
  2. P. Poulin and D. A. Weitz, “Inverted and multiple nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics57(1), 626–637 (1998).
  3. A. Martinez, H. C. Mireles, and I. I. Smalyukh, “Large-area optoelastic manipulation of colloidal particles in liquid crystals using photoresponsive molecular surface monolayers,” Proc. Natl. Acad. Sci. U.S.A.108(52), 20891–20896 (2011).
  4. Y. Gu and N. L. Abbott, “Observation of saturn-ring defects around solid microspheres in nematic liquid crystals,” Phys. Rev. Lett.85(22), 4719–4722 (2000).
  5. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater.6(12), 929–938 (2007).
  6. C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science326(5956), 1083–1086 (2009).
  7. J. S. Evans, C. Beier, and I. I. Smalyukh, “Alignment of high-aspect ratio colloidal gold nanoplatelets in nematic liquid crsytals,” J. Appl. Phys.110(3), 033535 (2011).
  8. T. Yamamoto, Y. Tabe, and H. Yokoyama, “Manipulation of defect structures and colloidal chains in liquid crystals by means of photochemical reactions of azobenzene compounds,” Colloids Surf. A Physicochem. Eng. Asp.334, 155–159 (2009).
  9. Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
  10. G. M. Koenig, I.-H. Lin, and N. L. Abbott, “Chemoresponsive assemblies of microparticles at liquid crystalline interfaces,” Proc. Natl. Acad. Sci. U.S.A.107(9), 3998–4003 (2010).
  11. M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater.9(11), 913–917 (2010).
  12. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
  13. M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science283(5399), 209–212 (1999).
  14. M. Ravnik, G. P. Alexander, J. M. Yeomans, and S. P. Žumer, “Three-dimensional colloidal crystals in liquid crystalline blue phases,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5188–5192 (2011).
  15. D. Engström, R. P. Trivedi, M. Persson, K. A. Bertness, M. Goksör, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter7(13), 6304–6312 (2011).
  16. R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt.13(4), 044001 (2011).
  17. B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett.12(2), 955–963 (2012).
  18. A. Martinez, T. Lee, T. Asavei, H. Rubinsztein-Dunlop, and I. I. Smalyukh, “Three-dimensional complex-shaped photopolymerized microparticles at liquid crystal interfaces,” Soft Matter8(8), 2432–2437 (2012).
  19. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
  20. O. M. Maragó, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano4(12), 7515–7523 (2010).
  21. D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol.7, 29–34 (2012).
  22. X. Wang, Y. P. Chen, and D. D. Nolte, “Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology,” Opt. Express16(26), 22105–22112 (2008).
  23. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett.94, 172102 (2009).
  24. R. P. Trivedi, I. I. Klevets, B. I. Senyuk, T. Lee, and I. I. Smalyukh, “Reconfigurable interactions and three-dimensional patterning of colloidal particles and defects in lamellar soft media,” Proc. Natl. Acad. Sci. U.S.A.109(13), 4744–4749 (2012).
  25. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the total optical angular momentum transfer in optical tweezers,” Opt. Express14, 6963 (2006).
  26. Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Opt. Express16(10), 6877–6882 (2008).
  27. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
  28. K. D. Bonin, B. Kourmanov, and T. G. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express10(19), 984–989 (2002).
  29. P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano3(10), 3077–3084 (2009).
  30. S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A76(4), 043408 (2007).
  31. B. Senyuk, Q. Liu, S. He, R. D. Kamien, R.B. Kusner, T. C. Lubensky, and I. I. Smalyukh. “Topological colloids.” doi:10.1038/nature11710 (2012). [CrossRef]
  32. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature442(7100), 282–286 (2006).
  33. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
  34. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
  35. Q. Liu, T. Asavei, T. Lee, H. Rubinsztein-Dunlop, S. He, and I. I. Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express19(25), 25134–25143 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited