OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Raman signal enhancement via elastic light scattering

Brett H. Hokr and Vladislav V. Yakovlev  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11757-11762 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1003 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The enhanced generation of a spontaneous Raman signal by way of elastic scattering is demonstrated. Using Monte Carlo simulations, we show that elastic scattering, by increasing the path length of light through the medium, enhances the generation of a Raman signal. This is investigated over a large parameter space, demonstrating that this effect is robust, and providing additional physical insight into the dynamics of light propagation in a turbid medium. Both the temporal and spatial profiles of the Raman signal are shown to depend heavily on the amount of scattering present.

© 2013 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 8, 2013
Revised Manuscript: April 29, 2013
Manuscript Accepted: April 30, 2013
Published: May 7, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Brett H. Hokr and Vladislav V. Yakovlev, "Raman signal enhancement via elastic light scattering," Opt. Express 21, 11757-11762 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005). [CrossRef]
  2. A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007). [CrossRef] [PubMed]
  3. R. Arora, G. I. Petrov, V. V. Yakovlev, and M. O. Scully, “Detecting anthrax in the mail via coherent Raman microspectroscopy,” Proc. Natl. Acad. Sci. U.S.A.109, 1151–1153 (2012). [CrossRef]
  4. B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012). [CrossRef] [PubMed]
  5. F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009). [CrossRef] [PubMed]
  6. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2, 307–310 (2008). [CrossRef]
  7. N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon migration in Raman spectroscopy,” Appl. Spectrosc.58, 591–597 (2004). [CrossRef] [PubMed]
  8. M. D. Keller, R. H. Wilson, M.-A. Mycek, and A. Mahadevan-Jansen, “Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc.64, 607–614 (2010). [CrossRef] [PubMed]
  9. P. Matousek, “Raman signal enhancement in deep spectroscopy of turbid media,” Appl. Spectrosc.61, 845–854 (2007). [CrossRef] [PubMed]
  10. W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part 1: theory and simulations,” Opt. Express16, 12726–12736 (2008). [CrossRef] [PubMed]
  11. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express13, 4420–4438 (2005). [CrossRef] [PubMed]
  12. T. J. Pfefer, Q. Wang, and R. A. Drezek, “Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue,” Comput. Meth. Prog. Bio.104, 161–167 (2011). [CrossRef]
  13. A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007). [CrossRef]
  14. Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun.183, 1588–1595 (2012). [CrossRef]
  15. A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express2, 2461–2469 (2011). [CrossRef] [PubMed]
  16. L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47, 131–146 (1995). [CrossRef]
  17. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophysics93, 70–83 (1941). [CrossRef]
  18. R. W. Boyd, Nonlinear Optics (Academic Press, 2003), 2nd ed.
  19. O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999). [CrossRef]
  20. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluourescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys.60, 227–292 (1997). [CrossRef]
  21. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc.59, 393–400 (2005). [CrossRef] [PubMed]
  22. M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt.10, 014014 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited