OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers

Chunxin Xu, Shulian Zhang, Yidong Tan, and Shijie Zhao  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 11819-11826 (2013)
http://dx.doi.org/10.1364/OE.21.011819


View Full Text Article

Enhanced HTML    Acrobat PDF (1754 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 106 in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1μm, a vertical resolution of 15μm and a longitudinal scanning range of over 10mm.

© 2013 OSA

OCIS Codes
(040.2840) Detectors : Heterodyne
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Microscopy

History
Original Manuscript: April 4, 2013
Revised Manuscript: April 27, 2013
Manuscript Accepted: April 27, 2013
Published: May 7, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Chunxin Xu, Shulian Zhang, Yidong Tan, and Shijie Zhao, "Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers," Opt. Express 21, 11819-11826 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-10-11819


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011). [CrossRef] [PubMed]
  3. D. F. Kiernan, W. F. Mieler, and S. M. Hariprasad, “Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems,” Am. J. Ophthalmol.149(1), 18–31, 31.e2 (2010). [CrossRef] [PubMed]
  4. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008). [CrossRef] [PubMed]
  5. T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011). [CrossRef] [PubMed]
  6. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin drom dynamic optical coherence elastography,” IEEE T. Biomed. Eng. (N.Y.)57(4), 953–959 (2010). [CrossRef]
  7. A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010). [CrossRef] [PubMed]
  8. A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys.20(4), 251–276 (2010). [CrossRef] [PubMed]
  9. A. Tanaka, K. Shimada, G. J. Tearney, H. Kitabata, H. Taguchi, S. Fukuda, M. Kashiwagi, T. Kubo, S. Takarada, K. Hirata, M. Mizukoshi, J. Yoshikawa, B. E. Bouma, and T. Akasaka, “Conformational change in coronary artery structure assessed by optical coherence tomography in patients with vasospastic angina,” J. Am. Coll. Cardiol.58(15), 1608–1613 (2011). [CrossRef] [PubMed]
  10. F. Abtahian and I. K. Jang, “Optical coherence tomography: basics, current application and future potential,” Curr. Opin. Pharmacol.12(5), 583–591 (2012). [CrossRef] [PubMed]
  11. F. Alfonso, M. Paulo, N. Gonzalo, J. Dutary, P. Jimenez-Quevedo, V. Lennie, J. Escaned, C. Bañuelos, R. Hernandez, and C. Macaya, “Diagnosis of spontaneous coronary artery dissection by optical coherence tomography,” J. Am. Coll. Cardiol.59(12), 1073–1079 (2012). [CrossRef] [PubMed]
  12. E. Zagaynova, N. Gladkova, N. Shakhova, G. Gelikonov, and V. Gelikonov, “Endoscopic OCT with forward-looking probe: clinical studies in urology and gastroenterology,” J Biophotonics1(2), 114–128 (2008). [CrossRef] [PubMed]
  13. G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Ponsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenterol.96(9), 2633–2639 (2001). [CrossRef] [PubMed]
  14. E. Osiac, A. Săftoiu, D. I. Gheonea, I. Mandrila, and R. Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract,” World J. Gastroenterol.17(1), 15–20 (2011). [CrossRef] [PubMed]
  15. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A64(4), 043815 (2001). [CrossRef]
  16. K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP(4)O(12) laser,” Opt. Lett.24(24), 1862–1864 (1999). [CrossRef] [PubMed]
  17. K. Otsuka, K. Abe, J. Y. Ko, and T. S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett.27(15), 1339–1341 (2002). [CrossRef] [PubMed]
  18. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett.24(11), 744–746 (1999). [CrossRef] [PubMed]
  19. X. Wan, D. Li, and S. L. Zhang, “Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing,” Opt. Lett.32(4), 367–369 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (61515 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited