OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Fundaments of optical far-field subwavelength resolution based on illumination with surface waves

Roberto Lopez-Boada, Charles J. Regan, Daniel Dominguez, Ayrton. A. Bernussi, and Luis Grave de Peralta  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11928-11942 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2984 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a general discussion about the fundamental physical principles involved in a novel class of optical superlenses that permit to realize in the far-field direct non-scanning images with subwavelength resolution. Described superlenses are based in the illumination of the object under observation with surface waves excited by fluorescence, the enhanced transmission of fluorescence via coupling with surface waves, and the occurrence of far-field coherence-related fluorescence diffraction phenomena. A Fourier optics description of the image formation based on illumination with surface waves is presented, and several recent experimental realizations of this technique are discussed. Our theoretical approach explains why images with subwavelength resolution can be formed directly in the microscope camera, without involving scanning or numerical post-processing. While resolution of the order of λ/7 has been demonstrated using the described approach, we anticipate that deeper optical subwavelength resolution should be expected.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(260.2510) Physical optics : Fluorescence
(260.6970) Physical optics : Total internal reflection

ToC Category:
Optics at Surfaces

Original Manuscript: March 5, 2013
Revised Manuscript: April 28, 2013
Manuscript Accepted: May 3, 2013
Published: May 8, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Roberto Lopez-Boada, Charles J. Regan, Daniel Dominguez, Ayrton. A. Bernussi, and Luis Grave de Peralta, "Fundaments of optical far-field subwavelength resolution based on illumination with surface waves," Opt. Express 21, 11928-11942 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23(11), 2383–2392 (2006). [CrossRef]
  2. E. Hetcht, Optics, 3rd edition (Addison Wesley, 1998).
  3. M. Born and E. Wolf, Priciples of Optics, 5th edition (Pergamon Press, 1975).
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  5. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett.84(22), 4403–4405 (2004). [CrossRef]
  6. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004). [CrossRef]
  7. O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012). [CrossRef]
  8. Y. Zhang, C. Arnold, P. Offermans, and J. Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20(9), 9431–9441 (2012). [CrossRef] [PubMed]
  9. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007). [CrossRef] [PubMed]
  10. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  11. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008). [CrossRef] [PubMed]
  12. R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011). [CrossRef]
  13. C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express20(19), 20827–20834 (2012). [CrossRef] [PubMed]
  14. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett.88(20), 207403 (2002). [CrossRef] [PubMed]
  15. C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, “Far-field optical superlens without metal,” J. Appl. Phys. ((to be published).
  16. M. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  17. G. Christou and C. Mias, “Critique of optical negative refraction superlensing,” Plasmonics6(2), 307–309 (2011). [CrossRef]
  18. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009). [CrossRef]
  19. L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanningn/a (2012), doi:. [CrossRef] [PubMed]
  20. I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004). [CrossRef]
  21. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004). [CrossRef] [PubMed]
  22. F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.6(7-8), 333–346 (1947). [CrossRef]
  23. S. A. Taya, E. J. El-Farram, and T. M. El-Agez, “Goos-Hänchen shift as a probe in evanescent slab waveguides sensors,” Int. J. Electron. Commun.66(3), 204–210 (2012). [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  25. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008). [CrossRef]
  26. L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011). [CrossRef]
  27. A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011). [CrossRef]
  28. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  29. Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by silver superlens,” Appl. Phys. Lett.83(25), 5184–5186 (2003). [CrossRef]
  30. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd Edition (Person Prentice Hall, 2007).
  31. B. Schumacher, Quantum mechanics: the Physics of the Microscopic World (The Teaching Company, 2009).
  32. E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005). [CrossRef]
  33. L. Grave de Peralta, “Phenomenological quantum description of the ultra fast response of arrayed waveguide gratings,” J. Appl. Phys.108(10), 103110 (2010). [CrossRef]
  34. Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett.38(5), 736–738 (2013). [CrossRef] [PubMed]
  35. W. T. Tang, E. Chung, Y. H. Kim, P. T. C. So, and C. J. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett.35(4), 517–519 (2010). [CrossRef] [PubMed]
  36. C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012). [CrossRef] [PubMed]
  37. C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Equifrequency curve dispersion in dielectric-loaded plasmonic crystals,” J. Appl. Phys.111(7), 073105 (2012). [CrossRef]
  38. C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011). [CrossRef]
  39. J. D. Joannopoulus, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited