OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers

Lingyao Yu, Yunlong Sheng, and Arthur Chiou  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12174-12184 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For studying the elastic properties of a biconcave red blood cell using the dual-trap optical tweezers without attaching microbeads to the cell, we implemented a three-dimensional finite element simulation of the light scattering and cell’s deformation using the coupled electromagnetic and continuum mechanics modules. We built the vector field of the trapping beams, the cell structure layout, the hyperelastic and viscoelastic cell materials, and we reinforced the constraints on the cell constant volume in the simulation. This computation model can be useful for studying the scattering and the other mechanical properties of the biological cells.

© 2013 OSA

OCIS Codes
(290.4210) Scattering : Multiple scattering
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: January 29, 2013
Revised Manuscript: March 31, 2013
Manuscript Accepted: April 3, 2013
Published: May 10, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Lingyao Yu, Yunlong Sheng, and Arthur Chiou, "Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers," Opt. Express 21, 12174-12184 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids51(11-12), 2259–2280 (2003). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987). [CrossRef] [PubMed]
  3. M. Khan, H. Soni, and A. K. Sood, “Optical tweezers for probing erythrocyte membrane deformability,” Appl. Phys. Lett.95(23), 233703 (2009). [CrossRef]
  4. G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express16(3), 1996–2004 (2008). [CrossRef] [PubMed]
  5. M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express2(7), 1803–1814 (2011). [CrossRef] [PubMed]
  6. A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers,” Opt. Express16(11), 7943–7957 (2008). [CrossRef] [PubMed]
  7. E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt.17(10), 101510 (2012). [CrossRef] [PubMed]
  8. Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7(5), 2042–2051 (2011). [CrossRef]
  9. I. Sraj, A. C. Szatmary, D. W. M. Marr, and C. D. Eggleton, “Dynamic ray tracing for modeling optical cell manipulation,” Opt. Express18(16), 16702–16714 (2010). [CrossRef] [PubMed]
  10. J. H. Zhou, M. C. Zhong, Z. Q. Wang, and Y. M. Li, “Calculation of optical forces on an ellipsoid using vectorial ray tracing method,” Opt. Express20(14), 14928–14937 (2012). [CrossRef] [PubMed]
  11. J. P. Mills, M. Diez-Silva, D. J. Quinn, M. Dao, M. J. Lang, K. S. W. Tan, C. T. Lim, G. Milon, P. H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh, “Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9213–9217 (2007). [CrossRef] [PubMed]
  12. G. J. C. G. M. Bosman, “Erythrocyte aging in sickle cell disease,” Cell. Mol. Biol. (Noisy-le-grand)50(1), 81–86 (2004). [PubMed]
  13. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A.105(37), 13730–13735 (2008). [CrossRef] [PubMed]
  14. A. Krantz, “Red cell-mediated therapy: Opportunities and challenges,” Blood Cells Mol. Dis.23(1), 58–68 (1997). [CrossRef] [PubMed]
  15. A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng.52(1), 13–18 (2005). [CrossRef] [PubMed]
  16. J. Lim, H. Ding, M. Mir, R. Zhu, K. Tangella, and G. Popescu, “Born approximation model for light scattering by red blood cells,” Biomed. Opt. Express2(10), 2784–2791 (2011). [CrossRef] [PubMed]
  17. T. Wriedta, J. Hellmers, E. Ereminab, and R. Schuh, “Light scattering by single erythrocyte: Comparison of different Methods,” J. Quant. Spectrosc. Ra.100(1-3), 444–456 (2006). [CrossRef]
  18. J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt.10(2), 024022 (2005). [CrossRef] [PubMed]
  19. J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt.10(6), 064013 (2005). [CrossRef] [PubMed]
  20. S. Rancourt-Grenier, M. T. Wei, J. J. Bai, A. Chiou, P. P. Bareil, P. L. Duval, and Y. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express18(10), 10462–10472 (2010). [CrossRef] [PubMed]
  21. P. B. Bareil and Y. Sheng, “Modeling highly focused laser beam in optical tweezers with the vector Gaussian beam in the T-matrix method,” J. Opt. Soc. Am. A30(1), 1–6 (2013). [CrossRef] [PubMed]
  22. E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res.4(4), 335–347 (1972). [CrossRef] [PubMed]
  23. X. C. Fung, Biomechanics: Mechanical Properties of Living Tissue, 2nd ed. (Springer, 1993).
  24. M. Friebel and M. Meinke, “Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements,” J. Biomed. Opt.10(6), 064019 (2005). [CrossRef] [PubMed]
  25. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  26. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999). [CrossRef]
  27. E. A. Evans, “A new material concept for the red cell membrane,” Biophys. J.13(9), 926–940 (1973). [CrossRef] [PubMed]
  28. C. Y. Chee, H. P. Lee, and C. Lu, “Using 3D fluid-structure interaction model to analyze the biomechanical properties of erythrocyte,” Phys. Lett. A372(9), 1357–1362 (2008). [CrossRef]
  29. R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy function of red blood cell membranes,” Biophys. J.13(3), 245–264 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited