OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Hollow core photonic crystal fiber as a reusable Raman biosensor

Altaf Khetani, Jason Riordon, Vidhu Tiwari, Ali Momenpour, Michel Godin, and Hanan Anis  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12340-12350 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2325 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report that a single hollow core photonic crystal fiber (HC-PCF) can be used for repetitive characterization of multiple samples by Raman spectroscopy. This was achieved by integrating the HC-PCF to a differential pressure system that allowed effective filling, draining and re-filling of samples into a HC-PCF under identical optical conditions. Consequently, high-quality and reliable spectral data could be obtained which were suitable for multivariate analysis (partial least squares). With the present scheme, we were able to accurately predict different concentrations of heparin and adenosine in serum. Thus the detection scheme as presented here paves a path for the inclusion of HC-PCFs in point-of-care technologies and environmental monitoring where rapid sample characterization is of utmost importance.

© 2013 OSA

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:

Original Manuscript: February 25, 2013
Revised Manuscript: April 18, 2013
Manuscript Accepted: May 3, 2013
Published: May 13, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Altaf Khetani, Jason Riordon, Vidhu Tiwari, Ali Momenpour, Michel Godin, and Hanan Anis, "Hollow core photonic crystal fiber as a reusable Raman biosensor," Opt. Express 21, 12340-12350 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005). [CrossRef]
  2. S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys.73(2), 024401 (2010). [CrossRef]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005). [CrossRef] [PubMed]
  4. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express15(20), 12783–12791 (2007). [CrossRef] [PubMed]
  5. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31(12), 1911–1913 (2006). [CrossRef] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002). [CrossRef] [PubMed]
  7. X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011). [CrossRef]
  8. Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010). [CrossRef] [PubMed]
  9. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007). [CrossRef]
  10. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express15(21), 13675–13681 (2007). [CrossRef] [PubMed]
  11. F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” J. Appl. Phys.109(11), 113104 (2011). [CrossRef]
  12. G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012). [CrossRef] [PubMed]
  13. A. Khetani, M. Naji, N. Lagali, R. Munger, and H. Anis, “A method for using Photonic Crystal Fiber as a Raman biosensor” US Patent 2010/0014077 (2010).
  14. V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within Hollow Core Photonic Crystal Fiber,” IEEE Sensors5404, 367–370 (2009).
  15. A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express19(16), 15244–15254 (2011). [CrossRef] [PubMed]
  16. V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).
  17. J. Riordon, M. Mirzaei, and M. Godin, “Microfluidic cell volume sensor with tunable sensitivity,” Lab Chip12(17), 3016–3019 (2012). [CrossRef] [PubMed]
  18. C. Schaschke, “Fluid Mechanics: Worked Example for Engineers Chapter 3” Rugby, Warwickshire, UK: IChemE. (2005).
  19. Polymicro Technologies catalog, “Estimating the Flow Rate in Capillary: Flow Rate in Capillaries” http://www.exploreourcapabilities.com/catalog/3_10.htm accessed February 24, 2013.
  20. G. W. Kaye and T. H. Laby, Viscosities Tables of physical and chemical constants (Harlow, Essex: Longman 1999) Chap. 2.
  21. K. H. Esbensen, An introduction to multivariate data analysis and experimental design (Camo Inc. Oslo 2004).
  22. C. M. McGoverin, A. S. S. Clark, S. E. Holroyd, and K. C. Gordon, “Raman spectroscopic quantification of milk powder constituents,” Anal. Chim. Acta673(1), 26–32 (2010). [CrossRef] [PubMed]
  23. D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999). [CrossRef] [PubMed]
  24. J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited