OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Wide-field computational color imaging using pixel super-resolved on-chip microscopy

Alon Greenbaum, Alborz Feizi, Najva Akbari, and Aydogan Ozcan  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12469-12483 (2013)
http://dx.doi.org/10.1364/OE.21.012469


View Full Text Article

Enhanced HTML    Acrobat PDF (1981 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lens-free holographic on-chip imaging is an emerging approach that offers both wide field-of-view (FOV) and high spatial resolution in a cost-effective and compact design using source shifting based pixel super-resolution. However, color imaging has remained relatively immature for lens-free on-chip imaging, since a ‘rainbow’ like color artifact appears in reconstructed holographic images. To provide a solution for pixel super-resolved color imaging on a chip, here we introduce and compare the performances of two computational methods based on (1) YUV color space averaging, and (2) Dijkstra’s shortest path, both of which eliminate color artifacts in reconstructed images, without compromising the spatial resolution or the wide FOV of lens-free on-chip microscopes. To demonstrate the potential of this lens-free color microscope we imaged stained Papanicolaou (Pap) smears over a wide FOV of ~14 mm2 with sub-micron spatial resolution.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Imaging Systems

History
Original Manuscript: March 18, 2013
Revised Manuscript: May 3, 2013
Manuscript Accepted: May 6, 2013
Published: May 14, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Alon Greenbaum, Alborz Feizi, Najva Akbari, and Aydogan Ozcan, "Wide-field computational color imaging using pixel super-resolved on-chip microscopy," Opt. Express 21, 12469-12483 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-10-12469


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express19(8), 7289–7298 (2011). [CrossRef] [PubMed]
  2. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  3. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.106(9), 2995–2999 (2009). [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  5. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  6. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express18(11), 11181–11191 (2010). [CrossRef] [PubMed]
  7. S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A.108(18), 7296–7301 (2011). [CrossRef] [PubMed]
  8. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008). [CrossRef]
  9. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  10. Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett.35(10), 1548–1550 (2010). [CrossRef] [PubMed]
  11. G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” J. Opt. Soc. Am. A8(5), 822–827 (1991). [CrossRef]
  12. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.45(5), 836–850 (2006). [CrossRef] [PubMed]
  13. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express17(4), 2880–2891 (2009). [CrossRef] [PubMed]
  14. C. J. Mann, L. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  15. Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011). [CrossRef] [PubMed]
  16. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett.37(13), 2694–2696 (2012). [CrossRef] [PubMed]
  17. X. Yu, M. Cross, C. Liu, D. C. Clark, D. T. Haynie, and M. K. Kim, “Measurement of the traction force of biological cells by digital holography,” Biomed. Opt. Express3(1), 153–159 (2012). [CrossRef] [PubMed]
  18. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt.49(34), H1–H10 (2010). [CrossRef] [PubMed]
  19. D. J. Brady, Optical Imaging and Spectroscopy, (John Wiley & Sons, 2009).
  20. Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, “Recovery of partially occluded objects by applying compressive Fresnel holography,” Opt. Lett.37(10), 1757–1759 (2012). [CrossRef] [PubMed]
  21. Y. Rivenson, A. Stern, and B. Javidi, “Overview of compressive sensing techniques applied in holography [Invited],” Appl. Opt.52(1), A423–A432 (2013). [CrossRef] [PubMed]
  22. A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by non-local means filtering,” Appl. Opt.52(1), A195–A200 (2013). [CrossRef] [PubMed]
  23. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt.48(34), H120–H136 (2009). [CrossRef] [PubMed]
  24. A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A25(3), 736–741 (2008). [CrossRef] [PubMed]
  25. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  26. M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Display Technol.7(1), 24–28 (2011). [CrossRef]
  27. P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express20(27), 28485–28493 (2012). [CrossRef] [PubMed]
  28. M. Paturzo, F. Merola, and P. Ferraro, “Multi-imaging capabilities of a 2D diffraction grating in combination with digital holography,” Opt. Lett.35(7), 1010–1012 (2010). [CrossRef] [PubMed]
  29. E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc.245(1), 49–62 (2012). [CrossRef] [PubMed]
  30. G. Jin, I. H. Yoo, S. P. Pack, J. W. Yang, U. H. Ha, S. H. Paek, and S. Seo, “Lens-free shadow image based high-throughput continuous cell monitoring technique,” Biosens. Bioelectron.38(1), 126–131 (2012). [CrossRef] [PubMed]
  31. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A.105(31), 10670–10675 (2008). [CrossRef] [PubMed]
  32. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett.31(9), 1211–1213 (2006). [CrossRef] [PubMed]
  33. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A.98(20), 11301–11305 (2001). [CrossRef] [PubMed]
  34. S. Pang, X. Cui, J. DeModena, Y. M. Wang, P. Sternberg, and C. Yang, “Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate,” Lab Chip10(4), 411–414 (2010). [CrossRef] [PubMed]
  35. S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett.37(23), 5018–5020 (2012). [CrossRef] [PubMed]
  36. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010). [CrossRef] [PubMed]
  37. A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A28(4), 604–612 (2011). [CrossRef] [PubMed]
  38. A. M. Maiden, J. M. Rodenburg, and M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett.35(15), 2585–2587 (2010). [CrossRef] [PubMed]
  39. A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods9(9), 889–895 (2012). [CrossRef] [PubMed]
  40. S. O. Isikman, A. Greenbaum, W. Luo, A. F. Coskun, and A. Ozcan, “Giga-pixel lensfree holographic microscopy and tomography using color image sensors,” PLoS ONE7(9), e45044 (2012). [CrossRef] [PubMed]
  41. O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. Allier, and A. Ozcan, “Wide-field optical detection of nano-particles using on-chip microscopy and self-assembled nano-lenses,” Nat. Photonics7, 247–254 (2013).
  42. T. W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy,” Anal. Chem.82(19), 8307–8312 (2010). [CrossRef] [PubMed]
  43. T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A.109(40), 16018–16022 (2012). [CrossRef] [PubMed]
  44. O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip10(18), 2419–2423 (2010). [CrossRef] [PubMed]
  45. W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip11(7), 1276–1279 (2011). [CrossRef] [PubMed]
  46. M. E. Celebi and G. Schaefer, eds., Color Medical Image Analysis, Lecture Notes in Computational Vision and Biomechanics (Springer, 2013).
  47. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Display Technol.4(1), 97–100 (2008). [CrossRef]
  48. B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett.30(2), 144–146 (2005). [CrossRef] [PubMed]
  49. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett.27(13), 1108–1110 (2002). [CrossRef] [PubMed]
  50. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett.27(16), 1403–1405 (2002). [CrossRef] [PubMed]
  51. S. O. Isikman, I. Sencan, O. Mudanyali, W. Bishara, C. Oztoprak, and A. Ozcan, “Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view,” Lab Chip10(9), 1109–1112 (2010). [CrossRef] [PubMed]
  52. J. Garcia-Sucerquia, “Color lensless digital holographic microscopy with micrometer resolution,” Opt. Lett.37(10), 1724–1726 (2012). [CrossRef] [PubMed]
  53. Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE7376, 737614, 737614-10 (2010). [CrossRef]
  54. H. Toge, H. Fujiwara, and K. Sato, “One-shot digital holography for recording color 3-D images,” Proc. SPIE6912, 69120U, 69120U-8 (2008). [CrossRef]
  55. P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt.50(34), H177–H182 (2011). [CrossRef] [PubMed]
  56. K. Jack, Video Demystified: A Handbook for the Digital Engineer (Elsevier, 2011).
  57. E. W. Dijkstra, “A note on two problems in connexion with Graphs,” Numer. Math.1(1), 269–271 (1959). [CrossRef]
  58. L. Yatziv and G. Sapiro, “Fast image and video colorization using chrominance blending,” IEEE Trans. Image Process.15(5), 1120–1129 (2006). [CrossRef] [PubMed]
  59. R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan, “Faster algorithms for the shortest path problem,” J. ACM37(2), 213–223 (1990). [CrossRef]
  60. A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express20(3), 3129–3143 (2012). [CrossRef] [PubMed]
  61. A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip12(7), 1242–1245 (2012). [CrossRef] [PubMed]
  62. L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun.199(1-4), 65–75 (2001). [CrossRef]
  63. P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt.45(34), 8596–8605 (2006). [CrossRef] [PubMed]
  64. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express11(24), 3234–3241 (2003). [CrossRef] [PubMed]
  65. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, and E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng.37(1), 247 (1998). [CrossRef]
  66. S. Park, M. Park, and M. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag.20(3), 21–36 (2003). [CrossRef]
  67. M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process.10(8), 1187–1193 (2001). [CrossRef] [PubMed]
  68. S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution of color images,” IEEE Trans. Image Process.15(1), 141–159 (2006). [CrossRef] [PubMed]
  69. J. W. Goodman, Introduction to Fourier Optics, Third (Roberts &Company Publishers, 2005).
  70. J. L. Pech-Pacheco, G. Cristóbal, J. Chamorro-Martínez, and J. Fernández-Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative study,” in Proceedings of IEEE Conference on Pattern Recognition (IEEE, 2000), pp. 314-317. [CrossRef]
  71. http://www.mathworks.com/matlabcentral/fileexchange/28790-colorspace-transformations .
  72. A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,” ACM Trans. Graph.23(3), 689–694 (2004). [CrossRef]
  73. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Third (Pearson Prentice Hall, 2008).
  74. M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007). [CrossRef] [PubMed]
  75. J. J. Baker, “Conventional and liquid-based cervicovaginal cytology: a comparison study with clinical and histologic follow-up,” Diagn. Cytopathol.27(3), 185–188 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited