OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Rapid spectral-domain localization

Thomas van Dijk, David Mayerich, Rohit Bhargava, and P. Scott Carney  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12822-12830 (2013)
http://dx.doi.org/10.1364/OE.21.012822


View Full Text Article

Enhanced HTML    Acrobat PDF (1522 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to dynamically image structures at nanometer spatial resolution with far-field instruments. We propose the use of engineered nanoprobes with distinguishable spectral responses and the measurement of coherent scattering, rather than fluorescence. Approaches such as PALM/STORM have relied on the rarity of emission events in time to distinguish signals from distinct probes. By distinguishing signals in the spectral domain, we enable the acquisition of data in a multiplex fashion and thus circumvent the fundamental problem of slow data acquisition of current techniques. The described method has the potential to image dynamic systems with a spatial resolution only limited to the size of the scattering probes.

© 2013 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: March 20, 2013
Revised Manuscript: May 2, 2013
Manuscript Accepted: May 3, 2013
Published: May 17, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Thomas van Dijk, David Mayerich, Rohit Bhargava, and P. Scott Carney, "Rapid spectral-domain localization," Opt. Express 21, 12822-12830 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-10-12822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006). [CrossRef] [PubMed]
  2. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006). [CrossRef] [PubMed]
  3. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006). [CrossRef] [PubMed]
  4. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000). [CrossRef]
  5. M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002). [CrossRef] [PubMed]
  6. P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008). [CrossRef]
  7. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikroskop. Anat.9, 413–418 (1873). [CrossRef]
  8. F. R. S. Lord Rayleigh, “XXXI. investigations in optics, with special reference to the spectroscope,” Phil. Mag. (5) 8, 261–274 (1879).
  9. S. W. Hell, “Far-field optical nanoscopy,” Science316, 1153–1158 (2007). [CrossRef] [PubMed]
  10. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19, 780–782 (1994). [CrossRef] [PubMed]
  11. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98 (2007). [CrossRef] [PubMed]
  12. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes RID d-4854-2009,” Science317, 1749–1753 (2007). [CrossRef] [PubMed]
  13. M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011). [CrossRef] [PubMed]
  14. H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007). [CrossRef]
  15. M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-Resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009). [CrossRef]
  16. I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010). [CrossRef] [PubMed]
  17. S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of Gold-Silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103, 3529–3533 (1999). [CrossRef]
  18. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012). [CrossRef] [PubMed]
  19. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012). [CrossRef]
  20. C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007). [CrossRef] [PubMed]
  21. A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620–13625 (2010). [CrossRef] [PubMed]
  22. M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011). [CrossRef] [PubMed]
  23. Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: . [CrossRef] [PubMed]
  24. H. C. van de Hulst, Light scattering by small particles (Dover Publications, 1982).
  25. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited