OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

A semi-analytical total suspended sediment retrieval model in turbid coastal waters: A case study in Changjiang River Estuary

Jun Chen, Eurico D'Sa, Tingwei Cui, and Xunhua Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13018-13031 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1404 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple semi-analytical model to estimate total suspended sediment matter (3S) was established for estimating TSM concentrations in Changjiang River Estuary. The results indicate that 3S model with near-infrared wavelengths provide good estimates of TSM concentrations in the study region. Furthermore, the applicability of 3S model was evaluated using an independent data set taken from Oujiang river estuary during September 2012. The results indicate that providing an available atmospheric correction scheme for satellite imagery, the 3S model could be used for quantitative monitoring of TSM concentration in coastal waters, even though local bio-optical information is still needed to reinitialize the model.

© 2013 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1030) Atmospheric and oceanic optics : Absorption
(010.1350) Atmospheric and oceanic optics : Backscattering
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 12, 2013
Revised Manuscript: April 10, 2013
Manuscript Accepted: April 12, 2013
Published: May 20, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Jun Chen, Eurico D'Sa, Tingwei Cui, and Xunhua Zhang, "A semi-analytical total suspended sediment retrieval model in turbid coastal waters: A case study in Changjiang River Estuary," Opt. Express 21, 13018-13031 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Turner and G. E. Millward, “Suspended particles: their role in estuarine biogeochemical cycles,” Estuar. Coast. Shelf Sci.55(6), 857–883 (2002). [CrossRef]
  2. L. Gao, D. J. Li, and P. X. Ding, “Variation of nutrients in response to the highly dynamic suspended particle matter in the Chang Jiang (Yangtze River) Plume,” Cont. Shelf Res.28(17), 2393–2403 (2008). [CrossRef]
  3. J. Chen, W. T. Quan, Z. H. Wen, and T. W. Cui, “An improved three-band semi-analytical algorithm in estimating chlorophyll-a concentration in high turbid Yellow River Estuary,” Environ. Earth Sci., doi.. (2013). [CrossRef]
  4. N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009). [CrossRef]
  5. Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012). [CrossRef]
  6. R. L. Miller and B. A. Mckee, “Using MODIS Terra 250 m imagery to map concentration of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004). [CrossRef]
  7. S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008). [CrossRef]
  8. S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993). [CrossRef]
  9. J. Chen, M. W. Zhang, T. W. Cui, and Z. H. Wen, “A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters,” IEEE J. Sel. Topics Appl. Earth Observ., 99, 1–15 (2013), . [CrossRef]
  10. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  11. T. M. Pedersen, C. L. Gallegos, and S. L. Nielsen, “Influence of near-bottom re-suspended sediment on benthic light availability,” Estuar. Coast. Shelf Sci.106, 93–101 (2012). [CrossRef]
  12. V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011). [CrossRef]
  13. R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and Gelbstoff in case II waters derived from satellite coastal coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994). [CrossRef]
  14. Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen, “Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data,” Remote Sens. Environ.81(2-3), 327–336 (2002). [CrossRef]
  15. A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data,” Int. J. Remote Sens.23(1), 15–35 (2002). [CrossRef]
  16. D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration,” Remote Sens. Environ.81(1), 149–161 (2002). [CrossRef]
  17. S. Sathyendranath, L. Prieur, and A. Morel, “A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens.10(8), 1373–1394 (1989). [CrossRef]
  18. M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010). [CrossRef]
  19. B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010). [CrossRef]
  20. A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977). [CrossRef]
  21. J. Z. Shi, “Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River Estuary, China: A personal perspective,” Geomorphology121(3-4), 133–151 (2010). [CrossRef]
  22. S.-L. Chen, G.-A. Zhang, S.-L. Yang, and J. Z. Shi, “Temporal variations of fine suspended sediment concentration in the Changjiang River Estuary and adjacent coastal waters, China,” J. Hydrol. (Amst.)331(1-2), 137–145 (2006). [CrossRef]
  23. S.-C. Hsu and F.-J. Lin, “Elemental characteristics of surface suspended particulates off the Changjiang estuary during the 1998 flood,” J. Mar. Syst.81(4), 323–334 (2010). [CrossRef]
  24. H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).
  25. F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010). [CrossRef]
  26. L. Gao, D. Fan, D. Li, and J. Cai, “Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China,” Mar. Environ. Res.69(3), 187–197 (2010). [CrossRef] [PubMed]
  27. J. Chen, W. Quan, Z. Wen, and T. Cui, “A simple “clear water” atmospheric correction algorithm for Landsat-5 sensors. I: A spectral slope based method,” Int. J. Remote Sens.34(11), 3787–3802 (2013). [CrossRef]
  28. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)
  29. M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens.24(3), 519–534 (2003). [CrossRef]
  30. H. J. Gons, M. T. Auer, and S. W. Effler, “MERIS Satellite Chlorophyll Mapping of Oligotrophic and Eutrophic Waters in the Laurentian Great Lakes,” Remote Sens. Environ.112(11), 4098–4106 (2008). [CrossRef]
  31. H. Ouaidrai and E. F. Vermote, “Operational atmospheric correction of Landsat TM data,” Remote Sens. Environ.70(1), 4–15 (1999). [CrossRef]
  32. K. Tachiiri, “Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: a case study in the Marsabit District, Kenya,” ISPRS J. Photogramm.59(3), 103–114 (2005). [CrossRef]
  33. M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009). [CrossRef]
  34. J. L. Mueller, C. O. Davis, R. A. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and C. R. McClain, “Above-water radiance and remote sensing measurement and analysis protocols,” Ocean Optics Protocols for Satellite Ocean-Color Sensor Validation, vol. Revision 4, III: Radiometric Measurements and Data Analysis Protocols, pp. NASA Tech. Memo (2003).
  35. G. M. Hale and M. R. Querry, “Optical constants of water in the 200nm to 200micrometer meter wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  36. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988). [CrossRef]
  37. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35(24), 4850–4862 (1996). [CrossRef] [PubMed]
  38. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters, 1st Ed.(CRC Press, 1995).
  39. R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978). [CrossRef]
  40. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005). [CrossRef] [PubMed]
  41. A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008). [CrossRef]
  42. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999). [CrossRef]
  43. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semi-analytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt.45(31), 8116–8131 (2006). [CrossRef] [PubMed]
  44. D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,” Appl. Opt.42(15), 2623–2634 (2003). [CrossRef] [PubMed]
  45. D. H. Schoellhamer, T. E. Mumley, and J. E. Leatherbarrow, “Suspended sediment and sediment-associated contaminants in San Francisco Bay,” Environ. Res.105(1), 119–131 (2007). [CrossRef] [PubMed]
  46. A. A. Gitelson and M. N. Merzlyak, “Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation,” J. Plant Physiol.143(3), 286–292 (1994). [CrossRef]
  47. P. B. Robert, S. Alexander, and Y. K. Kirill, Optical Properties and Remote Sensing of Inland and Coastal Waters, 1st Ed. (CRC Press, 1995).
  48. J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013). [CrossRef] [PubMed]
  49. P. Huck, B. Light, H. Eicken, and M. Haller, “Mapping sediment-laden sea ice in the Arctic using AVHRR remote sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load,” Remote Sens. Environ.107(3), 484–495 (2007). [CrossRef]
  50. F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002). [CrossRef]
  51. D. Doxaran, J. M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci.81(3), 321–332 (2009). [CrossRef]
  52. M. Fettweis, B. Nechad, and D. V. Eynde, “An esitmate of the suspended particulate matter transport in the southern North Sea using SeaWiFS images, in situ measurements and numverical model results,” Cont. Shelf Res.27, 1568–1583 (2007).
  53. D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009). [CrossRef]
  54. D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006). [CrossRef]
  55. J. Chen, W. T. Quan, M. W. Zhang, and T. W. Cui, “A simple atmospheric correction for MODIS in shallow turbid waters: a case study in Taihu Lake,” IEEE J. Sel. Topics Appl. Earth Observ (2012), doi.. [CrossRef]
  56. P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited