OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Method for modeling additive color effect in photonic polycrystals with form anisotropic elements: the case of Entimus imperialis weevil

Sébastien Mouchet, Jean-François Colomer, Cédric Vandenbem, Olivier Deparis, and Jean-Pol Vigneron  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13228-13240 (2013)
http://dx.doi.org/10.1364/OE.21.013228


View Full Text Article

Enhanced HTML    Acrobat PDF (4057 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The calculation of the reflectance of photonic crystals having form-birefringent anisotropic elements in the crystal unit cell, such as cylinders, often turns out to be problematic, especially when the reflectance spectrum has to be computed according to different crystal orientations as in polycrystals for instance. The method we propose here solves this problem in the specific case of photonic crystals whose periodicities are such that there are no diffraction orders except Bragg reflection in the visible range. For a given crystal orientation, the crystal is sliced into layers and the periodic spatial variations of the dielectric function ε are homogenized. Thanks to that homogenization, the calculation can be performed using standard thin film computation codes. In order to demonstrate the usefulness of our method, we applied it to the case of a natural photonic polycrystal found on the cuticle of Entimus imperialis weevil which is a remarkable example of additive color effect. Although each photonic crystal grain of the polycrystal produces a single bright iridescent color, a non-iridescent green matt coloration is perceived by the human eye due to multiscale averaging effects.

© 2013 OSA

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(300.6170) Spectroscopy : Spectra
(330.1690) Vision, color, and visual optics : Color
(160.1435) Materials : Biomaterials
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 27, 2013
Revised Manuscript: April 27, 2013
Manuscript Accepted: May 15, 2013
Published: May 23, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Sébastien Mouchet, Jean-François Colomer, Cédric Vandenbem, Olivier Deparis, and Jean-Pol Vigneron, "Method for modeling additive color effect in photonic polycrystals with form anisotropic elements: the case of Entimus imperialis weevil," Opt. Express 21, 13228-13240 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-11-13228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University Press, Princeton, 2008).
  2. S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58, 2059–2062 (1987). [CrossRef] [PubMed]
  4. O. Deparis and J.-P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B-Adv.169, 12–15 (2010). [CrossRef]
  5. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71, 811–818 (1981). [CrossRef]
  6. J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” in Photonic Crystal Materials and Devices IV, A. Adibi, S.-Y. Lin, and A. Scherer, eds., Proc. SPIE6128,61281G (2006). [CrossRef]
  7. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,”Philos. T. R. Soc. B366, 709–723 (2011). [CrossRef]
  8. P. Yeh, Optical Waves in Layered Media(Wiley-Interscience, Hoboken, 2005).
  9. S. Mouchet, J.-P. Vigneron, J.-F. Colomer, C. Vandenbem, and O. Deparis, “Additive Photonic Colors in the Brazilian Diamond Weevil, Entimus imperialis,” in The Nature of Light: Light in Nature IV, R. Liang, ed., Proc. SPIE8480, 848003 (2012). [CrossRef]
  10. S. Kinoshita, Structural Colors in the Realm of Nature(World Scientific Publishing Co, Singapore, 2008).
  11. D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012). [CrossRef]
  12. R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007). [CrossRef]
  13. L. P. Biró, K. Kertész, Z. Vértesy, and Zs. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” in The Nature of Light: Light in Nature II, Katherine Creath, ed., Proc. SPIE7057, 705706 (2008). [CrossRef]
  14. S. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” in Nanophotonics IV, D. L. Andrews, J.-M. Nunzi, and A. Ostendorf, eds., Proc. SPIE8424, 842425 (2012). [CrossRef]
  15. F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009). [CrossRef] [PubMed]
  16. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012). [CrossRef]
  17. X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012). [CrossRef]
  18. B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012). [CrossRef]
  19. S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012). [CrossRef]
  20. J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012). [CrossRef]
  21. P. Simonis and J.-P. Vigneron, “Structural color produced by a three-dimensional photonic polycrystal in the scales of a longhorn beetle: Pseudomyagrus waterhousei(Coleoptera: Cerambicidae),” Phys. Rev. E83, 011908 (2011). [CrossRef]
  22. V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007). [CrossRef]
  23. A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Opal analogue discovered in a weevil,” Nature (London) 426, 786–787 (2003). [CrossRef]
  24. M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10, 033014 (2008). [CrossRef]
  25. I. B. J. Sollas, “On the Identification of Chitin by Its Physical Constants,” P. Roy. Soc. B-Biol. Sci.79, 474–481 (1907). [CrossRef]
  26. B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. Roy. Soc. Interface9, 1609–1614 (2012). [CrossRef]
  27. J.-P. Vigneron, M. Ouedraogo, J.-F. Colomer, and M. Rassart, “Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica(Scutelleridae),” Phys. Rev. E79, 021907 (2009). [CrossRef]
  28. O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14, 3547–3555 (2006). [CrossRef] [PubMed]
  29. C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,”Opt. Express19, 11355–11364 (2011). [CrossRef] [PubMed]
  30. K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited