OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Phase registration based on matching of phase distribution characteristics and its application in FDOCT

Guozhong Liu, Zhehai Zhou, and Ping Li  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13241-13255 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4174 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase fluctuations in a two-transverse-dimensional scanning Fourier domain optical coherence tomography (FDOCT) seriously affect in vivo phase related applications. The phase difference between two A-scans sampled at the same scanning position or adjacent scanning position is acquired by matching of the phase distribution characteristics on the surface of two A-scans. Finger and palm scanning experiments are performed and defocused images of finger and palm are recovered based on Fresnel scalar diffraction algorithm by using phase compensated OCT complex signals. To further prove the performance of the proposed method, human eye scanning experiments are also performed and blood flow images of retina are extracted from the phase registration results. The accurate, fast and simple phase compensation method is critical for in vivo phase related applications.

© 2013 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.5755) Medical optics and biotechnology : Retina scanning

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 31, 2013
Revised Manuscript: April 20, 2013
Manuscript Accepted: May 17, 2013
Published: May 23, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Guozhong Liu, Zhehai Zhou, and Ping Li, "Phase registration based on matching of phase distribution characteristics and its application in FDOCT," Opt. Express 21, 13241-13255 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1–2), 43–48 (1995). [CrossRef]
  2. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  4. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004). [CrossRef] [PubMed]
  5. R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006). [CrossRef] [PubMed]
  6. Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt.14(3), 034014 (2009). [CrossRef] [PubMed]
  7. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  8. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  9. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef] [PubMed]
  10. P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol.18(11), 3365–3372 (2007). [CrossRef]
  11. D. Adler, T. Ko, P. Herz, and J. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express12(22), 5487–5501 (2004). [CrossRef] [PubMed]
  12. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006). [CrossRef] [PubMed]
  13. T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007). [CrossRef]
  14. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007). [CrossRef] [PubMed]
  15. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005). [CrossRef] [PubMed]
  16. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A26(1), 72–77 (2009). [CrossRef] [PubMed]
  17. G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express19(19), 18135–18148 (2011). [CrossRef] [PubMed]
  18. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  19. J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express19(22), 21258–21270 (2011). [CrossRef] [PubMed]
  20. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt.42(34), 6953–6958 (2003). [CrossRef] [PubMed]
  21. D. Lin, X. Jiang, F. Xie, W. Zhang, L. Zhang, and I. Bennion, “High stability multiplexed fiber interferometer and its application on absolute displacement measurement and on-line surface metrology,” Opt. Express12(23), 5729–5734 (2004). [CrossRef] [PubMed]
  22. Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express17(13), 10681–10687 (2009). [CrossRef] [PubMed]
  23. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett.26(16), 1271–1273 (2001). [CrossRef] [PubMed]
  24. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 578–581 (2006). [CrossRef]
  25. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  26. R. K. Wang and Z. H. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006). [CrossRef] [PubMed]
  27. G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express3(11), 2774–2783 (2012). [CrossRef] [PubMed]
  28. G. Liu and R. K. Wang, “Stripe motion artifact suppression in phase-resolved OCT blood flow images of the human eye based on the frequency rejection filter,” Chin. Opt. Lett.11(3), 031701–031705 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited