OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Transformation of light backscattering phase matrices of crystal clouds depending on the zenith sensing angle

Yury Balin, Bruno Kaul, Grigorii Kokhanenko, and David Winker  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13408-13418 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Problems encountered in the interpretation of results of laser sensing of crystal clouds are considered. The parameters characterizing the cloud particle orientation are determined through the backscattering phase matrix elements. It is demonstrated how these parameters are related to the probability density of particle distribution over the spatial orientation angles. Trends in the change of the backscattering phase matrices attendant to variations of the zenith sensing angle are shown on the example of a monodisperse ice particle ensemble.

© 2013 OSA

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.1350) Scattering : Backscattering
(290.5855) Scattering : Scattering, polarization

ToC Category:
Remote Sensing

Original Manuscript: April 18, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 16, 2013
Published: May 28, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Yury Balin, Bruno Kaul, Grigorii Kokhanenko, and David Winker, "Transformation of light backscattering phase matrices of crystal clouds depending on the zenith sensing angle," Opt. Express 21, 13408-13418 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Masuda and H. Ishimoto, “Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements,” J. Quant. Spectrosc. Radiat. Transf.85(2), 183–193 (2004). [CrossRef]
  2. C. M. R. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol.17(4), 482–488 (1978). [CrossRef]
  3. L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus B Chem. Phys. Meterol.42, 2011–2016 (1990).
  4. V. Noel and K. Sassen, “Study of planar ice crystal orientation in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol.44(5), 653–664 (2005). [CrossRef]
  5. V. Noel and H. Chepfer, “Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements,” J. Atmos. Sci.61(16), 2073–2081 (2004). [CrossRef]
  6. Y. Balin, B. Kaul, G. Kokhanenko, and D. Winker, “Application of circularly polarized laser radiation for sensing of crystal clouds,” Opt. Express17(8), 6849–6859 (2009). [CrossRef] [PubMed]
  7. W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO lidar description and performance assessment,” J. Atmos. Ocean. Technol.26(7), 1214–1228 (2009). [CrossRef]
  8. J. D. Klett, “Orientation model for particles in turbulence,” J. Atmos. Sci.52(12), 2276–2285 (1995). [CrossRef]
  9. B. V. Kaul and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” J. Atmos. Oceanic Opt.16, 866–870 (2005).
  10. M. Del Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of polarimetric lidar for the study of oriented ice plates in clouds,” Appl. Opt.45(20), 4878–4887 (2006). [CrossRef] [PubMed]
  11. A. Borovoi and N. Kustova, “Specular scattering by preferentially oriented ice crystals,” Appl. Opt.48(19), 3878–3885 (2009). [CrossRef] [PubMed]
  12. A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: application to CALIPSO signals,” Opt. Express20(27), 28222–28233 (2012). [CrossRef] [PubMed]
  13. B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt.43(36), 6620–6628 (2004). [CrossRef] [PubMed]
  14. M. Hayman, S. Spuler, B. Morley, and J. VanAndel, “Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers,” Opt. Express20(28), 29553–29567 (2012). [CrossRef] [PubMed]
  15. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957, Dover, New York, 1981).
  16. C. R. Hu, G. W. Kattawar, M. E. Parkin, and P. Herb, “Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a non-spherical dielectric scatter,” Appl. Opt.26, 4159–4173 (1987).
  17. J. W. Hovenier and C. V. M. Van Der Mee, “Testing scattering matrices a compendium of recipes,” J. Quant. Spectrosc. Radiat. Transf.55(5), 649–661 (1996). [CrossRef]
  18. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett.20(12), 1356–1358 (1995). [CrossRef] [PubMed]
  19. C. J. Flynn, A. Mendoza, Y. Zheng, and S. Mathur, “Novel polarization-sensitive micropulse lidar measurement technique,” Opt. Express15(6), 2785–2790 (2007). [CrossRef] [PubMed]
  20. G. G. Gimmestad, “Reexamination of depolarization in lidar measurements,” Appl. Opt.47(21), 3795–3802 (2008). [CrossRef] [PubMed]
  21. B. V. Kaul and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 2. Azimuth orientation,” Atmos. Oceanic Opt.19, 38–42 (2006).
  22. B. V. Kaul, “Effect of electric field on orientation of ice cloud particles,” Atmos. Oceanic Opt.19, 751–754 (2006).
  23. H.-R. Cho, J. V. Iribarne, and W. G. Richards, “On the orientation of ice crystals in a cumulo-nimbus cloud,” J. Atmos. Sci.38(5), 1111–1114 (1981). [CrossRef]
  24. V. V. Kuznetsov, N. K. Nikiforova, and L. N. Pavlova, “On measuring the microstructure of crystal fogs by an Aspekt-10 television aerosol spectrometer,” Trudy Inst. Eksper. Meteorol.7(112), 101–106 (1983).
  25. M. Kajikawa, “Laboratory measurement of falling velocity of individual ice crystals,” J. Meteor. Soc. Japan51, 263–272 (1972).
  26. K. Sassen, “Remote sensing of planar ice crystals fall attitudes,” J. Meteorol. Soc. Jpn.58, 422–429 (1980).
  27. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, Leningrad, 1984).
  28. D. N. Romashov, “Backscattering phase matrix of monodisperse ensembles of hexagonal water ice crystals,” Atmos. Oceanic Opt.12, 376–384 (1999).
  29. Yu. S. Balin, B. V. Kaul, and G. P. Kokhanenko, “Observation of specularly reflective particles and layers in crystal clouds,” Atmos. Oceanic Opt.24, 293–299 (2011).
  30. Y. S. Balin, B. V. Kaul, G. P. Kokhanenko, and I. E. Penner, “Observations of specular reflective particles and layers in crystal clouds,” Opt. Express19(7), 6209–6214 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited