OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths

Sebastian Romero-García, Florian Merget, Frank Zhong, Hod Finkelstein, and Jeremy Witzens  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14036-14046 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1735 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon nitride is demonstrated as a high performance and cost-effective solution for dense integrated photonic circuits in the visible spectrum. Experimental results for nanophotonic waveguides fabricated in a standard CMOS pilot line with losses below 0.71dB/cm in an aqueous environment and 0.51dB/cm with silicon dioxide cladding are reported. Design and characterization of waveguide bends, grating couplers and multimode interference couplers (MMI) at a wavelength of 660 nm are presented. The index contrast of this technology enables high integration densities with insertion losses below 0.05 dB per 90° bend for radii as small as 35 µm. By a proper design of the buried oxide layer thickness, grating couplers with efficiencies above 38% for the TE polarization have been obtained.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.0130) Integrated optics : Integrated optics
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.0230) Optical devices : Optical devices

ToC Category:
Integrated Optics

Original Manuscript: March 28, 2013
Revised Manuscript: May 19, 2013
Manuscript Accepted: May 23, 2013
Published: June 4, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Sebastian Romero-García, Florian Merget, Frank Zhong, Hod Finkelstein, and Jeremy Witzens, "Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths," Opt. Express 21, 14036-14046 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Masini, G. Capellini, J. Witzens, and C. Gunn, “High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors,” Proc. 20th Lasers and Electro-Optics Soc.(LEOS), 848-849 (2007).
  2. D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE8265, 826507, 826507-9 (2012). [CrossRef]
  3. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol.22(7), 1734–1740 (2004). [CrossRef]
  4. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express16(18), 13509–13516 (2008). [CrossRef] [PubMed]
  5. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  6. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  7. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010). [CrossRef]
  8. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011). [CrossRef]
  9. J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012). [CrossRef]
  10. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012). [CrossRef] [PubMed]
  11. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett.97(8), 081108 (2010). [CrossRef]
  12. G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE3620, 109–116 (1999). [CrossRef]
  13. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip12(19), 3803–3809 (2012). [CrossRef] [PubMed]
  14. J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express19(8), 7034–7061 (2011). [CrossRef] [PubMed]
  15. C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461 (2010). [CrossRef]
  16. G. Maire, L. Vivien, G. Sattler, A. Kaźmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express16(1), 328–333 (2008). [CrossRef] [PubMed]
  17. A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012). [CrossRef]
  18. J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005). [CrossRef]
  19. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett.32(11), 1495–1497 (2007). [CrossRef] [PubMed]
  20. T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977). [CrossRef]
  21. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express18(17), 18278–18283 (2010). [CrossRef] [PubMed]
  22. C. Alonso-Ramos, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, L. Zavargo-Peche, and R. Halir, “Efficient fiber-to-chip grating coupler for micrometric SOI rib waveguides,” Opt. Express18(14), 15189–15200 (2010). [CrossRef] [PubMed]
  23. F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007). [CrossRef]
  24. W. Sfar Zaoui, M. Félix Rosa, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “High-Efficient CMOS-compatible grating couplers with backside metal mirror,” Europ. Conf. Opt. Comm. (ECOC), Amsterdam, Netherlands, Sept. 16-20 (2012).
  25. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010). [CrossRef] [PubMed]
  26. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited