OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Next generation Advanced Laser Fluorometry (ALF) for characterization of natural aquatic environments: new instruments

Alexander Chekalyuk and Mark Hafez  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14181-14201 (2013)
http://dx.doi.org/10.1364/OE.21.014181


View Full Text Article

Enhanced HTML    Acrobat PDF (3186 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The new optical design allows single- or multi-wavelength excitation of laser-stimulated emission (LSE), provides optimized LSE optical collection for spectral and temporal analyses, and incorporates swappable modules for flow-through and small-volume sample measurements. The basic instrument configuration uses 510 nm laser excitation for assessments of chlorophyll-a, phycobiliprotein pigments, variable fluorescence (Fv/Fm) and chromophoric dissolved organic matter (CDOM) in CDOM-rich waters. The three-laser instrument configuration (375, 405, and 510 nm excitation) provides additional Fv/Fm measurements with 405 nm excitation, CDOM assessments in a broad concentration range, and potential for spectral discrimination between oil and CDOM fluorescence. The new measurement protocols, analytical algorithms and examples of laboratory and field measurements are discussed.

© 2013 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.0300) Spectroscopy : Spectroscopy
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 23, 2013
Revised Manuscript: May 23, 2013
Manuscript Accepted: May 24, 2013
Published: June 7, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Alexander Chekalyuk and Mark Hafez, "Next generation Advanced Laser Fluorometry (ALF) for characterization of natural aquatic environments: new instruments," Opt. Express 21, 14181-14201 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-12-14181


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Chekalyuk and M. Hafez, “Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration,” Opt. Express19(23), 22643–22658 (2011). [CrossRef] [PubMed]
  2. A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012). [CrossRef]
  3. Y. Dandonneau and J. Neveux, “Diel variations of in vivo fluorescence in the eastern equatorial Pacific: an unvarying pattern,” Deep Sea Res. Part II Top. Stud. Oceanogr.44(9-10), 1869–1880 (1997). [CrossRef]
  4. P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985). [CrossRef]
  5. C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010). [CrossRef]
  6. C. D. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep Sea Res. Part II Top. Stud. Oceanogr.41(2-3), 391–410 (1994). [CrossRef]
  7. Y. Z. Yacobi, “From Tswett to identified flying objects: A concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012). [CrossRef]
  8. M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002). [CrossRef] [PubMed]
  9. A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008). [CrossRef]
  10. T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993). [CrossRef]
  11. H. L. MacIntyre, E. Lawrenz, and T. L. Richardson, “Taxonomic discrimination of phytoplankton by spectral fluorescence,” in Chlorophyll: A Fluorescence in Aquatic Sciences: Methods and Applications, D. J. Suggett, O. Prasil, and M. A. Borowitzka, eds. (Springer, 2010).
  12. P. B. Oldham and I. M. Warner, “Analysis of natural phytoplankton populations by pattern recognition of two dimensional fluorescence spectra,” Spectrosc. Lett.20(5), 391–413 (1987). [CrossRef]
  13. G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005). [CrossRef] [PubMed]
  14. T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010). [CrossRef] [PubMed]
  15. J. Seppälä and M. Balode, “The use of spectral fluorescence methods to detect changes in the phytoplankton community,” Hydrobiologia363(1/3), 207–217 (1997). [CrossRef]
  16. C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).
  17. T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008). [CrossRef]
  18. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000). [CrossRef] [PubMed]
  19. P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995). [CrossRef]
  20. Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993). [CrossRef]
  21. Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998). [CrossRef] [PubMed]
  22. R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996). [CrossRef]
  23. R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999). [CrossRef] [PubMed]
  24. U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993). [CrossRef]
  25. U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012). [CrossRef] [PubMed]
  26. C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001). [CrossRef]
  27. N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007). [CrossRef]
  28. C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003). [CrossRef] [PubMed]
  29. Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012). [PubMed]
  30. A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, “Characterization of crude oils using fluorescence lifetime data,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(5), 1025–1037 (2002). [CrossRef] [PubMed]
  31. R. J. Exton, W. M. Houghton, W. E. Esaias, R. C. Harriss, F. H. Farmer, and H. H. White, “Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation,” Appl. Opt.22(1), 54–64 (1983). [CrossRef] [PubMed]
  32. R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983). [CrossRef]
  33. L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994). [CrossRef]
  34. S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993). [CrossRef]
  35. A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe-EARSeL,” Adv. Remote Sens.3, 131–139 (1995).
  36. F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981). [CrossRef] [PubMed]
  37. D. N. Klyshko and V. V. Fadeev, “Remote determination of concentration of impurities in water by the laser spectroscopy method with calibration by Raman scattering,” Sov. Phys. Dokl.23, 55–59 (1978).
  38. A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review I,” Appl. Spectrosc. Rev.48(1), 1–49 (2013). [CrossRef]
  39. A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review II,” Appl. Spectrosc. Rev.48(2), 77–141 (2013). [CrossRef]
  40. A. Nebbioso and A. Piccolo, “Molecular characterization of dissolved organic matter (DOM): a critical review,” Anal. Bioanal. Chem.405(1), 109–124 (2013). [CrossRef] [PubMed]
  41. Z. Z. Zhou and L. D. Guo, “Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico,” Environ. Res. Lett.7(2), 025301 (2012), doi:. [CrossRef]
  42. Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013). [CrossRef]
  43. Z. Z. Zhou, Z. F. Liu, and L. D. Guo, “Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition,” Mar. Pollut. Bull.66(1-2), 164–175 (2013). [CrossRef] [PubMed]
  44. M. L. Nahorniak and K. S. Booksh, “Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices,” Analyst (Lond.)131(12), 1308–1315 (2006). [CrossRef] [PubMed]
  45. R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008). [CrossRef]
  46. M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008). [CrossRef]
  47. X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).
  48. X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002). [CrossRef]
  49. R. Alexander, P. Gikuma-Njuru, and J. Imberger, “Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis,” Limnol. Oceanogr. Methods10, 402–415 (2012). [CrossRef]
  50. R. Alexander and J. Imberger, “Phytoplankton patchiness in Winam Gulf, Lake Victoria: a study using principal component analysis of in situ fluorescent excitation spectra,” Freshw. Biol.58(2), 275–291 (2013). [CrossRef]
  51. A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012). [CrossRef] [PubMed]
  52. M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006). [CrossRef] [PubMed]
  53. M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009). [CrossRef]
  54. S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012). [CrossRef] [PubMed]
  55. R. Röttgers and B. P. Koch, “Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean,” Biogeosciences9(7), 2585–2596 (2012). [CrossRef]
  56. J. J. Cullen and R. F. Davis, “The blank can make a big difference in oceanographic measurements,” Limnol. Oceanogr. Bull.12, 29–35 (2003).
  57. E. Fuchs, R. C. Zimmerman, and J. S. Jaffe, “The effect of elevated levels of phaeophytin in natural waters on variable fluorescence measured from phytoplankton,” J. Plankton Res.24(11), 1221–1229 (2002). [CrossRef]
  58. S. R. Laney and R. M. Letelier, “Artifacts in measurements of chlorophyll fluorescence transients, with specific application to fast repetition rate fluorometry,” Limnol. Oceanogr. Methods6, 40–50 (2008). [CrossRef]
  59. R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010). [CrossRef]
  60. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991). [CrossRef]
  61. M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited